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ABSTRACT

Regression testing is widely recognized as an important but time-

consuming process. To alleviate this cost issue, test selection, reduc-

tion, and prioritization have been widely studied, and they share the

commonality that they improve regression testing by optimizing

the execution of the whole test suite. In this paper, we attempt to

accelerate regression testing from a totally new perspective, i.e.,

skipping some execution of a new program by reusing program

states of an old program. Following this intuition, we propose a

state-reuse based acceleration approach SRRTA, consisting of two

components: state storage and loading. With the former, SRRTA

collects some program states during the execution of an old version

through three heuristic-based storage strategies; with the latter,

SRRTA loads the stored program states with efficiency optimiza-

tion strategies. Through the preliminary study on commons-math,

SRRTA reduces 82.7% of the regression testing time.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

Regression testing is to rerun tests on modified software so as to

guarantee the quality of modified software. Nowadays regression

testing plays a critical role in software development but it is very

costly [8].
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To alleviate the cost issue of regression testing, researchers have

put dedicated efforts in the domain of test selection, reduction, and

prioritization, and have proposed a large number of approaches

accordingly [4–7, 9–20, 23–26, 28–30, 32, 33]. In particular, test

selection aims to select and run the tests relevant to software mod-

ification, test reduction aims to reduce a test suite by removing

redundant tests, and test prioritization aims to schedule the exe-

cution order of a test suite. The commonality of them is that they

address the cost issue of regression testing in the same way, i.e.,

optimizing the given test suite.

In this paper, we attempt to address the cost issue of regression

testing in a totally new direction, optimizing the execution process

of an individual test. Given two programs 𝑃0 (before modification)
and 𝑃1 (after modification), the execution of 𝑃0 is similar to 𝑃1 due
to the similarity between 𝑃0 and 𝑃1. Based on this intuition, some
of the program states of 𝑃0 may be the same as 𝑃1, where a pro-
gram state refers to a set of variables’ values during execution [27].

Therefore, we can reuse program states of 𝑃0 to address the cost
issue of regression testing.

In particular, we propose a regression testing acceleration ap-

proach SRRTA, which first collects program states during the execu-

tion of 𝑃0 (i.e., state storage) and then reuses these program states
during the execution of 𝑃1 (i.e., state loading). As state storage and
loading would introduce extra costs in regression testing time, it

is essential for SRRTA to balance its performance and cost so as

to achieve the final acceleration. To address the challenge, SRRTA

designs storage strategies in attempt to record the program states

before/after time-consuming code in the state storage phase, and

reduces loading costs with efficiency optimization strategies in the

state loading phase. We further conduct a preliminary study on

Apache Commons Math, and find that SRRTA reduces 82.7% regres-

sion testing time of 𝑃1 but incurs 25.2% extra testing time of 𝑃0 and
95.3M space. Moreover, we investigate the influence of different

storage strategies and find that skipping executions of loop struc-

tures (i.e., 𝑆𝑡𝑜𝑟𝑒𝑙𝑜𝑜𝑝 strategy) can achieve the largest acceleration
at most cases compared to the other strategies.

The contributions of this paper are summarized as follows: (1) a

new dimension to alleviate the cost concern of regression testing;

(2) a new acceleration technique SRRTA based on program state

reuse; (3) a preliminary study demonstrating the performance of

SRRTA.

2 APPROACH

Given two programs 𝑃0 (before modification) and 𝑃1 (after modi-
fication) in regression testing, we propose a state-reuse based ac-

celeration approach SRRTA following the intuition: the program
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Figure 1: Illustration example

states unaffected by regression modifications can be directly reused

instead of executing the relevant instructions. Following this intu-

ition, the latter executions are skipped so that the regression testing

process of 𝑃1 can be accelerated. Figure 1 is used to illustrate SRRTA.
The second column presents an old program 𝑃0, while regression
modification occurs on the sixth row.

2.1 Overview

Instead of executing all the instructions of 𝑃1, SRRTA aims to only
execute the instructions affected by regression modifications by

reusing the stored program states of the old version. To facilitate

state reuse, SRRTA consists of two components: state storage and

state loading. In state storage (integrated in the testing process of

𝑃0), SRRTA stores the program states at pre-defined code locations
(i.e., storage points) during test execution, where a program state

is a set of active variable values1. In state loading (integrated in

the regression testing process of 𝑃1), for instructions between any
adjacent storage points, SRRTA skips their executions by loading

program states of the next storage point if they are not affected by

the modified code; otherwise, SRRTA executes these instructions.

2.2 State Storage

While executing 𝑃0, SRRTA collects the program states at the pre-
defined storage points on-the-fly by storing all active variables and

their values when the instruction on each storage point is executed.

We use 𝐿𝛿 to denote the set of code elements modified between
𝑃0 and 𝑃1, and 𝐿𝑆 to denote the set of code elements set as storage
points by SRRTA. The execution trace of a test case on 𝑃0 is repre-
sented as a sequence of instructions, i.e., 𝑡𝑟𝑎𝑐𝑒 =< 𝐼1, 𝐼2, 𝐼3, ..., 𝐼𝑛 >.
Each instruction 𝐼 is a unique dynamic instance of the static code
element 𝐿 which is mapped by the function 𝐿 = 𝑙𝑜𝑐 (𝐼 ). For ease of
representation, we classify each instruction 𝐼 into three categories:
(i) modified instructions (i.e., 𝐼𝑀𝑜𝑑 ), the instances of code elements

modified between 𝑃0 and 𝑃1, i.e., 𝑙𝑜𝑐 (𝐼 ) ∈ 𝐿𝛿 ; (ii) storage instructions
(i.e., 𝐼𝑆𝑡𝑜𝑟𝑒 ), the instances of code elements set as storage points, i.e.,
𝑙𝑜𝑐 (𝐼 ) ∈ 𝐿𝑆 ; (iii) normal instructions (i.e., 𝐼𝑁𝑜𝑟𝑚), the instructions
which are not modified nor storage instructions. If a storage point

happens to be modified from 𝑃0 to 𝑃1, its relevant instructions are
regarded as modified instructions instead of storage instructions.

Moreover, while executing each storage instruction (i.e., 𝐼𝑆𝑡𝑜𝑟𝑒 ),

1Active variables are the variables valid in run-time memory.

SRRTA records the program state 𝑆𝑡𝑎𝑡𝑒 (𝑃0, 𝐼𝑆𝑡𝑜𝑟𝑒 ) including the
active variables and their values in the memory.

As shown in the example, SRRTA sets three storage points (i.e.,

𝐼𝑆𝑡𝑜𝑟𝑒1, 𝐼𝑆𝑡𝑜𝑟𝑒2, and 𝐼𝑆𝑡𝑜𝑟𝑒3) on 𝑃0, and therefore after the phase of
state storage, SRRTA collects three sets of program states respec-

tively (shown in Column “𝑆𝑡𝑎𝑡𝑒 (𝑃0, 𝐼𝑠𝑡𝑜𝑟𝑒 )”).
Storage strategy. At each storage point, SRRTA records all ac-

tive variables and their values regardless of their types, so as to

guarantee the program state is reusable. For example, for variables

with basic types (e.g., integer or float), SRRTA directly stores the

identifiers and their values; for objects, SRRTA stores the values

of all the domain variables. This exhaustive storage mechanism

induces extra overheads (i.e., time/space) in the execution of 𝑃0. The
overheads are dependent on the number of storage points: record-

ing program states of all instructions can be extremely expensive

in time and space, while setting too sparse storage points might

be insufficient to capture reusable program states. To balance the

effectiveness and efficiency of SRRTA, storage points are supposed

to (i) be set as few as possible in 𝑃0 and (ii) help skipping the exe-
cution of instructions as many as possible in 𝑃1. Since the intuition
of SRRTA is to skip instruction executions by reusing the program

states which are safe from regression modifications, an ideal storage

strategy is to store the program states immediately before and after

the modified code locations, however, which are unavailable before

the release of the new version program 𝑃1. Therefore, SRRTA is de-
signed to guard time-consuming code locations with storage points.

In particular, we propose three heuristic storage strategies by set-

ting storage points in entries/exits of loops (𝑆𝑡𝑜𝑟𝑒𝑙𝑜𝑜𝑝 ), method in-
vocations (𝑆𝑡𝑜𝑟𝑒𝑚𝑒𝑡ℎ𝑜𝑑 ) and conditional statements (𝑆𝑡𝑜𝑟𝑒𝑏𝑟𝑎𝑛𝑐ℎ),
which are often involving quantities of instruction executions and

can be quite time consuming for execution. In this paper, we use the

combination of these heuristic storage strategies (i.e., 𝑆𝑡𝑜𝑟𝑒𝑎𝑙𝑙 ) as
the default setting, and investigate the impact of different strategies

in Section 4.

In Figure 1, storage points 2 and 3 are guarding a loop structure

which spans over 91 instructions (i.e., from 𝐼𝑁𝑜𝑟𝑚3 to 𝐼𝑁𝑜𝑟𝑚94 ) since
the loop statements (e.g., j < len) are executed repeatedly.

2.3 State Loading

Algorithm 1 presents the state loading process of SRRTA. Given

the execution trace 𝑡𝑟𝑎𝑐𝑒 on 𝑃0 and the program states of each
storage instruction (i.e., 𝑆𝑡𝑎𝑡𝑒 (𝑃0, 𝐼𝑆𝑡𝑜𝑟𝑒 )), for any two adjacent
storage instructions (i.e., 𝐼𝑆𝑡𝑜𝑟𝑒𝑖 and 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 ), if the instructions
between them are not affected by any modification, SRRTA skips

their executions and directly loads the stored program state on

𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 , which is a safe transition from 𝐼𝑆𝑡𝑜𝑟𝑒𝑖 to 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 and the
𝑡𝑟𝑎𝑐𝑒 on 𝑃1 between them is the same as 𝑃0 (i.e., given in Line 19 -
Line 21). Otherwise, SRRTA executes these instructions to avoid

violating the validity of program 𝑃1 and the 𝑡𝑟𝑎𝑐𝑒 on 𝑃1 can be
acquired through execution (i.e., given in Line 23 - Line 27).

Safe transition.A transition from 𝐼𝑆𝑡𝑜𝑟𝑒𝑖 to 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 is regarded
as a safe transition, only if between 𝐼𝑆𝑡𝑜𝑟𝑒𝑖 and 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 (i) there is
no modified instruction; and (ii) there is no instruction accessing

the variables whose values are changed in the program states on

𝐼𝑆𝑡𝑜𝑟𝑒𝑖 (i.e., given in Line 7 - Line 17). For the latter, SRRTA (i) first
compares the program states on 𝐼𝑆𝑡𝑜𝑟𝑒𝑖 of the old program 𝑃0 and
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Algorithm 1: State loading on 𝑃1 execution

Input: 𝑃0; execution trace 𝑡𝑟𝑎𝑐𝑒0; program states 𝑆𝑡𝑎𝑡𝑒 (𝑃0, 𝐼𝑆𝑡𝑜𝑟𝑒 )
Output: 𝑃1; execution trace 𝑡𝑟𝑎𝑐𝑒1; program states 𝑆𝑡𝑎𝑡𝑒 (𝑃1, 𝐼𝑆𝑡𝑜𝑟𝑒 )

1 𝑡𝑟𝑎𝑐𝑒1 ← [] // Initialize trace in 𝑃1
2 𝐼𝑐𝑢𝑟 , 𝐼𝑛𝑒𝑥𝑡 ← 𝐸𝑛𝑡𝑟𝑦 // Initialize instruction counter

3 I𝑠 ← 𝑆𝑡𝑜𝑟𝑒𝐼𝑛𝑠 (𝑡𝑟𝑎𝑐𝑒0) // Initialize storage instruction list

4 𝑖 ← 1

5 repeat
6 𝐼𝑛𝑒𝑥𝑡 ← 𝐼𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑖
7 /* A safe transition or not? */

8 𝐹𝑙𝑎𝑔𝑠𝑎𝑓 𝑒 ← 𝑇𝑟𝑢𝑒
9 /* Compute changed variables between 𝑃0 and 𝑃1 */

10 𝑉𝑝 ← 𝐷𝑖𝑓 𝑓 (𝑆𝑡𝑎𝑡𝑒 (𝑃0, 𝐼𝑐𝑢𝑟 ), 𝑆𝑡𝑎𝑡𝑒 (𝑃1, 𝐼𝑐𝑢𝑟 ))
11 for 𝐼 in 𝑡𝑟𝑎𝑐𝑒0 [𝐼𝑐𝑢𝑟 , 𝐼𝑛𝑒𝑥𝑡 ] do
12 if 𝐼 ∈ 𝐼𝑀𝑜𝑑 then
13 𝐹𝑙𝑎𝑔𝑠𝑎𝑓 𝑒 ← 𝐹𝑎𝑙𝑠𝑒 // Modified Instructions

14 break;

15 if 𝑉𝑝 accessed by 𝐼 then
16 𝐹𝑙𝑎𝑔𝑠𝑎𝑓 𝑒 ← 𝐹𝑎𝑙𝑠𝑒 // Polluted variables accessed

17 break;

18 /* A safe transition from 𝐼𝑐𝑢𝑟 to 𝐼𝑛𝑒𝑥𝑡 */

19 if 𝐹𝑙𝑎𝑔𝑠𝑎𝑓 𝑒 then
20 𝑡𝑟𝑎𝑐𝑒1 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑟𝑎𝑐𝑒0 [𝐼𝑐𝑢𝑟 , 𝐼𝑛𝑒𝑥𝑡 ])
21 // Update the stored variables in 𝑉𝑝

22 /* A unsafe transition from 𝐼𝑐𝑢𝑟 to 𝐼𝑛𝑒𝑥𝑡 */

23 else
24 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 (𝐼𝑐𝑢𝑟 ) // Load current state

25 𝐼𝑛𝑠 ← 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑃1)
26 𝑡𝑟𝑎𝑐𝑒1 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐼𝑛𝑠)
27 // Update the stored states

28 𝐼𝑐𝑢𝑟 ← 𝐼𝑛𝑒𝑥𝑡
29 𝑖 ← 𝑖 + 1
30 until 𝑖 > |I𝑠 |
31 return 𝑡𝑟𝑎𝑐𝑒1, 𝑆𝑡𝑎𝑡𝑒 (𝑃1, 𝐼𝑆𝑡𝑜𝑟𝑒 )

the new program 𝑃1, and identifies the polluted variables (which
refer to the variables whose values are different between versions

and are denoted as𝑉𝑝 ); (ii) then performs data dependency analysis
to check whether any variable in 𝑉𝑝 is accessed by the instructions
between 𝐼𝑆𝑡𝑜𝑟𝑒𝑖 and 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 . In particular, SRRTA only regards
read operations as accessing operations, since writing a variable

in memory overwrites its original value, which actually eliminates

the propagation of the changed values.

From Figure 1, the transition from 𝐼𝑆𝑡𝑜𝑟𝑒1 to 𝐼𝑆𝑡𝑜𝑟𝑒2 is unsafe
since there is a modified instruction between them (i.e., 𝐼𝑀𝑜𝑑1), and

thus SRRTA executes all instructions between 𝐼𝑆𝑡𝑜𝑟𝑒1 and 𝐼𝑆𝑡𝑜𝑟𝑒2 .
The transition from 𝐼𝑆𝑡𝑜𝑟𝑒2 to 𝐼𝑆𝑡𝑜𝑟𝑒3 is safe: although program
states are different on 𝐼𝑆𝑡𝑜𝑟𝑒2 , the polluted variable c (addressed by
orange in the figure) is not accessed by any instruction between

𝐼𝑆𝑡𝑜𝑟𝑒2 to 𝐼𝑆𝑡𝑜𝑟𝑒3 . Therefore, SRRTA skips the execution of the entire
loop by directly loading the program states on 𝐼𝑆𝑡𝑜𝑟𝑒3 .
Loading efficiency optimization. Frequently loading program

states can induce extra time costs in regression testing. To reduce

the time costs, SRRTA merges successive safe transitions to reduce

the times of state loading, and only reloads value-changed variables

to reduce the number of loading variables each time. For example,

when the transition from 𝐼𝑆𝑡𝑜𝑟𝑒𝑖 to 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 and the transition from
𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 to 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+2 are both safe transitions, SRRTA directly loads
program states on 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+2 (i.e., merging the two transitions). In
addition, on each storage point 𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 , SRRTA only loads the
variables that are overwritten by instructions between 𝐼𝑆𝑡𝑜𝑟𝑒𝑖 and
𝐼𝑆𝑡𝑜𝑟𝑒𝑖+1 . From Figure 1, when loading program states on 𝐼𝑆𝑡𝑜𝑟𝑒3 ,

SRRTA only reloads the variable this.matrix, because it is the

only variable whose value is modified in the loop.

3 IMPLEMENTATION

SRRTA is implemented with ASM 2, and two challenges exist in

the implementation.

Collecting/loading variables values. During run-time, vari-

ables are stored in the local variable table, whose values cannot

be obtained directly. ASM provides bytecode instructions which

can place variables in the local variable table to the operand stack,

where variables can be operated. Therefore, SRRTA first inserts

bytecode instructions to transfer values from local variables table to

the operand stack and then invokes the store and load functions we

define. In this way, the variables and their values during run-time

can be further logged into local files.

Transition between storage points. SRRTA realizes transi-

tions between storage points by adding jump (e.g., GOTO) instruc-

tions between them. Whether a transition is safe and which storage

point SRRTA should jump to can only be determined during run-

time, but instrumentation has to be conducted before the program

execution. To address this problem, when instrumenting 𝑃1, SRRTA
marks all the storage points with unique labels, encodes transitions

through GOTO instructions with these labels, and inserts all the pos-

sible transitions on each storage point with conditional judgments.

In this way, according to the run-time information and conditional

judgments, SRRTA can determine to conduct transitions or not, and

decide the next storage point to jump to on-the-fly.

4 PRELIMINARY STUDY

In this work, we study two research questions: (1) RQ1: how does

SRRTA perform on reducing regression testing time? (2) RQ2: how

do different storage strategies impact the performance of SRRTA?

4.1 Study Design

Subjects.We evaluate SRRTA on a real-world open-source project

Apache Commons Math [1], based on one of whose snapshots [2]

we construct 15 pairs of test cases and source code under test. For

each method under test, we use the original code as the old pro-

gram 𝑃0, and construct a new program 𝑃1 by randomly seeding
syntactic modification on 𝑃0. To facilitate modification seeding, we
adopt popular mutation operators widely used in previous stud-

ies [21, 22, 31] (e.g., arithmetic operator replacement or literal value

replacement), and randomly decide the locations and number of

mutants3.

Independent variables. Besides the default setting of SRRTA,

i.e., the combination of the three storage strategies, we investigate

the effectiveness of each individual strategy as well as the random

strategy (i.e., 𝑆𝑡𝑜𝑟𝑒𝑟𝑎𝑛𝑑𝑜𝑚), which randomly sets the same number
of storage points as the best strategy among the three above.

Dependent variables. To measure the performance of SRRTA

on regression testing acceleration, we collect the time of regres-

sion testing on 𝑃1 without/with SRRTA respectively (i.e., original
time/online time). Considering the time cost on instrumentation

and its impact on 𝑃0 execution, we collect both the instrumentation

2https://asm.ow2.io/
3Considering the scale of the project, no more than 3 mutants are used in this study.
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Strategy
Execution Time on 𝑃1 Extra Overhead

#Success
Original Online Reduced Collection Time Ins Time Space

𝑆𝑡𝑜𝑟𝑒𝑎𝑙𝑙 2,379.1 11,333.8/82.7% 3,461.6/25.2% 1,469.2 97,593.8 15/15

𝑆𝑡𝑜𝑟𝑒𝑙𝑜𝑜𝑝 13,713.0 2,755.6 10,957.4/79.9% 3,923.7/28.6% 1,538.3 114,100.9 10/10

𝑆𝑡𝑜𝑟𝑒𝑏𝑟𝑎𝑛𝑐ℎ 6,800.9 6,912.1/50.4% 549.5/4.0% 933.6 5.3 5/10

𝑆𝑡𝑜𝑟𝑒𝑚𝑒𝑡ℎ𝑜𝑑 12,774.7 938.3/6.8% 1,606.1/11.7% 685.7 32,235.4 0/10

𝑆𝑡𝑜𝑟𝑒𝑟𝑎𝑛𝑑𝑜𝑚 8,563.8 5,149.2/37.5% 2,540.1/18.5% 1,056.8 74,156.0 5/15

Table 1: Results of SRRTA with various storage strategies

(time is measured in milliseconds and space is measured in

kilobytes)

time on 𝑃0 and 𝑃1, and the extra time cost in 𝑃0 execution (com-
pared to no instrumentation), and regard them as offline time cost of

SRRTA. Moreover, we also record the space cost in storing program

states, which is the extra space overhead of SRRTA. To eliminate

randomness in time collection, we repeat all the experiments 10

times and adopt the average as the final results.

Threats to validity. The internal threat to validity lies in the

implementations of our approach. To reduce this threat, two au-

thors have carefully checked the code. The external threat to va-

lidity mainly lies in the subjects, including code modifications and

test cases. We plan to extend the experiments on more real-world

projects in the future. The construction threat to validity mainly

lies in the simple statistics used in result analysis. We listed the

complete results on the website of this project.

4.2 Result Analysis

Table 1 presents the results of SRRTAwith various storage strategies.

The former six columns present the average results, while the last

column #𝑆𝑢𝑐𝑐𝑒𝑠𝑠 presents the number of cases that SRRTA succeeds
accelerating regression testing among the test cases that SRRTA

can be applied on. Columns “Original ” and “Online” show the re-

gression testing time on the new program 𝑃1 without/with SRRTA
respectively. Column “Collection Time” shows the extra regression

time caused by the instrumented 𝑃0, Column “Ins Time” shows the
instrumentation time, and Column “Space” shows the space cost, all

of which can be regarded as the time and space cost of SRRTA. For

ease of understanding, Column “Reduced” shows the reduced re-

gression testing time achieved by SRRTA and the percentages in the

fourth and fifth Columns show the corresponding ratio on the orig-

inal regression testing time. The complete results and analysis are

given in the website: https://github.com/SRRTA/NIER-SRRTA.

RQ1: acceleration. Shown by the second row, SRRTA with

the default setting successfully accelerates all the 15 regression-

testing cases with 82.7. On the other hand, we observe that SRRTA

consumes non-trivial time and space during the testing process of

the old program 𝑃0, indicating the necessity to alleviate the cost
issue of SRRTA in the future.

RQ2: storage strategies. As a storage strategy may not be ap-

plicable to all the 15 cases in this study, we show the total number

of applicable cases after the “/” in the last column. For example, in a

program without loop structures, 𝑆𝑡𝑜𝑟𝑒𝑙𝑜𝑜𝑝 strategy is not applica-
ble. From this table, the storage strategy indeed affects the perfor-

mance of SRRTA. For example, among the three proposed strategies,

𝑆𝑡𝑜𝑟𝑒𝑙𝑜𝑜𝑝 achieves the largest number of successful cases, and its
online time is the smallest, confirming that loop structure may be

usually time consuming in regression testing. We also observe that

even 𝑆𝑡𝑜𝑟𝑒𝑟𝑎𝑛𝑑𝑜𝑚 successfully accelerates 5 cases, indicating that
reusing program states can indeed save a part of execution time;

moreover, 𝑆𝑡𝑜𝑟𝑒𝑟𝑎𝑛𝑑𝑜𝑚 performs worse than most of the storage
strategies, indicating the effectiveness of the proposed heuristic

storage strategies.

As for the cases that SRRTA fails to save online regression time,

e.g., the online time of SRRTA on some tests increases 103.4ms

and 966.4ms respectively, we manually investigate these cases and

find the reasons may be that (i) SRRTA has not skipped execution

of any instructions (i.e., no safe transition can be conducted) or

(ii) the original execution time of the skipped tests is less than

the extra costs introduced by SRRTA in run-time. In other words,

for the cases that SRRTA significantly reduces the execution time,

SRRTA must perform state loading at least once and the skipped

instructions are supposed to be quite time consuming; and for the

cases with no state loading, SRRTA does not change the original

execution behavior and thus brings no improvement in execution

efficiency.

5 RELATEDWORK

In the literature, test selection, reduction, and prioritization have

been proposed to alleviate the cost issue of regression testing [32].

Although a large number of techniques have been proposed in these

domains, they address the cost issue of regression testing from the

same perspective, optimizing the execution of a test suite, instead

of individual test cases, which makes them different from our work.

Besides, there are some techniques (e.g., compiler optimizations)

proposed in the literature to accelerate individual executions, but

in different scenarios. Our work is inspired by the mutation testing

acceleration approach AccMut, which uses only one process to

represent each equivalence statements of mutants [31]. The most

related work is the VMVM [3], which executes all the unit test cases

in one JVM to save the initialization time of each test.

6 CONCLUSION AND FUTUREWORK

To alleviate the regression-testing cost issue, we present SRRTA

through state reuse and it is demonstrated to be very promising. In

the future, we will improve our work through three aspects.

SRRTA is applicable to consecutive scenario, where SRRTA up-

dates the states if the states are changed when testing the other

versions instead of 𝑃0, given by Lines 21 and 27 in Algorithm 1. In
the future we plan to investigate the performance of SRRTA in the

consecutive scenario.

The extra overhead induced by storage is the main drawback

of SRRTA, which may be alleviated by (1) removing unnecessary

variables (i.e., no longer used later) from state storage, (2) sharing

common states across tests, and (3) improving the storage strategy

on time-consuming snippets.

Besides variables’ values, code execution may also have other

side effects (e.g., I/O operations), which may lead to safety issues

of SRRTA and may be hidden behind call chains and is not easily

identified. Therefore, in the future we plan to improve SRRTA by

addressing these safety issues.
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