
Understanding Build Issue Resolution in Practice:
Symptoms and Fix Patterns

Yiling Lou

HCST, CS, Peking University

Beijing, China

yiling.lou@pku.edu.cn

Zhenpeng Chen

HCST, CS, Peking University

Beijing, China

czp@pku.edu.cn

Yanbin Cao

HCST, CS, Peking University

Beijing, China

caoyanbin@pku.edu.cn

Dan Hao
∗

HCST, CS, Peking University

Beijing, China

haodan@pku.edu.cn

Lu Zhang

HCST, CS, Peking University

Beijing, China

zhanglucs@pku.edu.cn

ABSTRACT
Build systems are essential for modern software maintenance and

development, while build failures occur frequently across software

systems, inducing non-negligible costs in development activities.

Build failure resolution is a challenging problem and multiple stud-

ies have demonstrated that developers spend non-trivial time in

resolving encountered build failures; to relieve manual efforts, au-

tomated resolution techniques are emerging recently, which are

promising but still limitedly effective. Understanding how build

failures are resolved in practice can provide guidelines for both

developers and researchers on build issue resolution. Therefore,

this work presents a comprehensive study of fix patterns in practi-

cal build failures. Specifically, we study 1,080 build issues of three

popular build systemsMaven, Ant, and Gradle from Stack Overflow,

construct a fine-granularity taxonomy of 50 categories regarding to

the failure symptoms, and summarize the fix patterns for different

failure types. Our key findings reveal that build issues stretch over

a wide spectrum of symptoms; 67.96% of the build issues are fixed

by modifying the build script code related to plugins and dependen-

cies; and there are 20 symptom categories, more than half of whose

build issues can be fixed by specific patterns. Furthermore, we also

address the challenges in applying non-intuitive or simplistic fix

patterns for developers.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Build systems, Build failure resolution, Empirical study

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00

https://doi.org/10.1145/3368089.3409760

ACM Reference Format:
Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang. 2020. Un-

derstanding Build Issue Resolution in Practice: Symptoms and Fix Patterns.

In Proceedings of the 28th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’20), November 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3368089.3409760

1 INTRODUCTION
Build systems play an essential role in modern software develop-

ment, facilitating developers’ build activities by automatically trans-

forming source code to executable software. Meanwhile, build fail-

ures occur frequently both in commercial and open-source software

systems [17, 22, 27] and postpone software development activities

with non-negligible costs [17]. Multiple previous studies [17, 32]

show that developers spend non-trivial efforts in resolving their

encountered build failures. To facilitate manual resolution, studies

on automated build failure fixing are emerging in recent years. For

example, Al-Kofahi et al. [6] proposed a fault localization approach

for Makefiles based on dynamic execution trace analysis; Lou et
al. [18] utilized program analysis and search-based strategies to

fix general-type build failures. Although promising, existing auto-

mated techniques have been shown to have limited effectiveness in

practice (especially for general-type build failures) and the state-

of-the-art technique can fix only a small ratio of build failures (i.e.,

18%) [18].

To provide developers and researchers with practical guidelines

on this challenging problem, understanding how build failures are

resolved by developers in practice is helpful. Fortunately, two recent

studies have shed some light on this problem. Zhang et al. [32] stud-
ied fix patterns in compiler errors in build process; Macho et al. [19]
investigated frequent resolution patterns in dependency-related

build failures. However, both studies target at only a specific failure

type, leaving many other categories of build failures unexplored. So

far there is no comprehensive understanding of fix patterns across

different types of build failures.

Therefore, in this paper, we conduct a comprehensive study on

general build failures, considering both symptoms and fix patterns.

We collect a dataset of 1,080 Stack Overflow (SO) posts related to

build issues in three mainstream Java build systems Maven, Gradle,
and Ant [14, 20, 26, 27]. Based on the dataset, we manually sum-

marize build failure symptoms and fix patterns from SO question

617

https://doi.org/10.1145/3368089.3409760
https://doi.org/10.1145/3368089.3409760

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang

descriptions and accepted answers; we also distill frequent topics

from how-to questions to show the build knowledge that develop-

ers lack. We focus our study on the following questions that we

believe could provide insights for developers and researchers.

RQ1: topics in how-to questions. How-to questions present

the build knowledge that developers are inexpert at, which tend to

induce future build failures. By studying frequent topics in how-to

questions, we uncover the difficulties that developers face in config-

uring their builds and the vulnerabilities that should be addressed

by automated tools and techniques.

RQ2: symptoms of build failures. By constructing a compre-

hensive taxonomy of build failure symptoms, we suggest frequent

failure types and the symptoms neglected by previous work, which

should be addressed by the future study.

RQ3: fix patterns of build failures. By studying fix patterns

in each symptom category, we summarize their characteristics

and commonalities, and provide insights for both developers and

researchers about principled ways in build failure resolution.

Our main findings reveal a high diversity in build issue symp-

toms (i.e., 50 categories); and most (69.68%) build issues are related

to dependency resolution, parse, output execution, compilation, and
assemble, widely covering 25 different symptom categories; more-

over, output execution covers 14.41% of the build issues, which are

often neglected by previous studies. We also find that 67.96% build

issues are fixed by patterns applied in build script code related to

plugins and dependencies, among which the most two frequent

patterns are correcting plugin setting and adding missing depen-

dency; besides, for 20 symptom categories, more than half of their

build issues can be fixed by specific patterns. In addition, we discuss

the challenges in applying non-intuitive and simplistic fix patterns.

The summary of all findings and implications is listed in Table 1.

As the first comprehensive study on build issue resolution, this

paper makes the following contributions:

• Revealing the difficult build topics for developers, which may

become vulnerabilities for inducing future build failures.

• Constructing a fine-granularity and comprehensive taxon-

omy of build failure symptoms via manual classification,

which facilitates the fixing pattern analysis for build failures.

• Summarizing fixing patterns for different build failure symp-

tomswith practical guidelines for developers and researchers

in build failure resolution domain.

2 BACKGROUND
Build systems are responsible for transforming project source code

into a collection of deliverables (e.g., executable software or dis-

tributable library) [20]. With the increasing demand on the building

process, build systems become more complex by including various

functionalities besides the basic ones (e.g., compile or assemble).

For example, static code analysis, code coverage collection, and

mutation testing can be integrated into the build process via third-

party plugins. To facilitate the understanding of such complex build

systems, we draw Figure 1 to present the build workflow by summa-

rizing the commonalities of mainstream Java build systems Maven,
Ant, and Gradle.

Components. Build system leads the entire build process fol-

lowing developers’ instructions. The inputs of build process usually

Build script

Source code

Resource

REPOSITORY

BUILD
SYSTEM

INPUT OUTPUT

Code
analysis

4. Prepare

2.Resolve
dependency

3.Resolve
plugin

5.Compile

TASK

1. Parse

Dependency Plugin

ENVIRONMENT IDEOS/Runtime-environment/Software

Executable/
distributable

software

Compile

AssembleDocument
Resource
process

Test

Figure 1: Build workflow

consist of build script, source code, and resource, while the output
is assembled software in a distributable or executable format such

as Jar, Ear, War, or Apk. More specifically, a build script is a collec-

tion of developers’ instructions written in a script language, which

varies among different build systems. For example, Gradle requires
a build script written in Groovy DSL while aMaven script is written
in XML format. The resource refers to the artifacts necessary for

the build process (e.g., images). As for the other required non-local

artifacts (e.g., dependencies or plugins), the build system down-

loads them from external repositories. Besides, a successful build

process also relies on the build environment, referring to the opera-

tion system, run-time environment (e.g., memory), network setting,

or other installed software. We include IDE in the build process,

since besides command lines, build tasks can also be invoked in

IDE. Build process is associated with these components, and thus

build failures may come from any of them or their interaction.

Workflow. Once the build system is launched, it first parses and

validates the input build script (e.g., checks syntax and resolves

properties defined in the script code). Then build system prepares

the required dependencies and plugins by downloading them from

specified location (e.g., central/remote/local repository). The subse-

quent build process is a sequence of build tasks and each of them

is actually an invocation of certain plugin. For example, Maven
utilizes the plugin maven-compiler-plugin to perform compila-

tion task and the maven-deploy-plugin to deploy distributable

outputs; Gradle is capable of building Android applications with

various extended functions in the plugin Android. Various build

tasks are shown in Figure 1, such as test, code analysis, and doc-

ument generation; tasks of compilation and resource preparation

are also based on plugin invocations, but they are put outside the

box since they are common build tasks and often invoked by de-

fault. After all the build tasks finish, besides the by-product (e.g.,

reports generated by specific plugins), the main output (e.g., an

executable project) is available for execution or distribution. We re-

gard a build as successful, only when the workflow finishes without

interruption, and all the tasks and outputs behave as developers’

expectation; otherwise, we consider it as a build failure.

3 METHODOLOGY
To understand how developers resolve build issues, we analyze the

build-related posts on Stack Overflow (SO). Figure 2 illustrates the

overview of the methodology used in our study.

618

Understanding Build Issue Resolution in Practice: Symptoms and Fix Patterns ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Summary of findings and implications

Findings about how-to build issues Implications
F.1 Developers ask a wide range (11 high-level categories) of how-to topics

on build systems, and grammar (27.25%), common tasks (19.14%), I/O (13.51%),

dependencies (12.61%), and command line (8.56%) are asked most frequently.

I.1 The frequently asked how-to topics imply the vulnerable components in a

build script, which may be given priority attention for build failure detection

and fix techniques.

F.2 Most (80.84%) questions are about build script programming and some

developers complain about limited help from documents and tutorials.

I.2 The documentation of plugins, libraries, and build tools should be improved

in terms of the completeness, usability, and readability; code generation tech-

niques may be adopted to facilitate build script generation and completion.

Findings about build issue symptoms Implications
F.3We construct a taxonomy of 50 symptom categories for build issues; and

25 error categories in dependency resolution (19.57%), parse (15.48%), output
execution (14.41%), compilation (12.04%), and assemble (8.17%) are frequently
asked by developers (69.68% in total).

I.3 Build issue resolution is challenging due to the diversity in symptom cate-

gories; techniques for detecting and fixing general build issues should cover as

broad spectrum of the categories as possible; researchers should pay attention

to these categories that developers find difficult to fix.

F.4 Output execution (14.41%) covers build issues with delayed exposure and

65.67% of them encounter class loading error.
I.4 To uncover these issues earlier: (1) introduce early examination mechanism

for build outputs; (2) check the configuration consistence between run-time

and build-time environments.

Findings about fix patterns Implications
F.5More than half (67.96%) of the build issues are fixed by patterns related to

plugins and dependencies, covering 37 out of 50 symptom categories. The top

two frequent fixing patterns are correcting plugin setting (18.27%) and adding

missing dependency (13.54%).

I.5 Our suggestion to developers is checking plugin settings and absence of

dependency declaration first. Our suggestion to researchers is assigning high

suspiciousness values to the script code related to plugin and dependency in

designing fault localization techniques, and adding more fix operations and

ingredients on these components in designing automated repair techniques.

F.6 20 out of 50 symptom categories have frequent fixing patterns, such as

adding missing dependency to resolve class loading error and changing build

tool version to solve plugin apply error.

I.6 The frequent pairs obtained from our study may serve as common fix

strategies for both manual and automated build issue resolution.

F.7 There is no common fix pattern for most symptom categories (60.00%) and

each category has more than three fix patterns in average (range from 1 to 10),

indicating that a non-negligible part of build issues are fixed case by case.

I.7 There is no silver bullet for fixing arbitrary types of build issues. Therefore,

researchers may facilitate automated resolution via embedding more prior-

experience rules (including the corner cases in our studies) or mining more

cases from big data to expand fix strategies.

F.8 Most (79.78%) fix patterns are simple and contain only a few lines of modi-

fication but require comprehensive and up-to-date knowledge on third-party

resources to apply.

I.8 Automated resolution techniques are suggested to include autonomous

updating mechanism to update their embedded fix strategies that are related to

external resources, so as to keep stable effectiveness.

F.9 Some symptom categories are fixed by non-intuitive patterns (e.g., illegal

symbol fixed by changing plugin version) and in these cases developers often

find it challenging to localize the causes.

I.9We suggest tool vendors to provide deeper hints for build issues to assist de-

velopers’ resolution. Moreover, the existence of non-intuitive patterns indicates

build errors with fault localization challenges.

How-to questions

Build failures

Refine datasetIdentify related
issueDownload SO dataset

Manual
labelled issues

RQ1: how-to topic

RQ2: symptom

RQ3: fix pattern

Figure 2: Overview of the methodology

3.1 Data Collection
It has been a common practice for SE researchers to get insight into

developers’ concerns on different SE issues by mining related posts

from SO [5, 7, 8, 23, 30, 33]. In our study, we use SO as the data

source because: (i) as one of the most popular community-driven

Q&A websites, the users in SO range from novices to experts, in-

creasing the diversity of the analyzed issues; (ii) developers often

seek for help in SO after they cannot find solutions in documents

or internet search, leading to more unsolvable and non-trivial build

problems in our analyzed data; (iii) SO inherently contains build

issues with implicit symptoms which are often hard to be captured

in reproduced or historical build data, increasing comprehensive-

ness of the dataset. We construct our dataset of build issues from

SO in the following steps.

Step 1: download Stack Overflow dataset. We download SO

dataset S𝑎𝑙𝑙 from the official Data Dump in December 2019 [2],

which covers 18,597,996 SO posts from July 31, 2008 to December

1, 2019. We keep the post identifier, question body, answers, and

tags in the metadata of each post for our study.

Step 2: identify build-related posts. An SO post usually has

1 to 5 tags [8], which indicate the belonging domains of the post.

Therefore, we utilize a set of build-related tags to identify and

extract build-related posts from S𝑎𝑙𝑙 . Similar to previous work [8],

we construct a set of build-related tags as follows.

(1) We start with a tag set T𝑖𝑛𝑖 that includes our initial build-
related tags. As this study focuses on three mainstream Java build

systems Maven, Gradle, and Ant that are widely studied in pre-

vious work [14, 20, 26, 27], we define an initial tag set T𝑖𝑛𝑖 =

{𝑎𝑛𝑡, 𝑚𝑣𝑛, 𝑔𝑟𝑎𝑑𝑙𝑒}.
(2) We extract a subset of posts S𝑝𝑎𝑟𝑡 whose tags match at least

one tag in T𝑖𝑛𝑖 and identify more build-related tags based on S𝑝𝑎𝑟𝑡 .

Specifically, we construct a set of candidate tags T𝑐𝑎𝑛𝑑 by extracting

all the tags of the posts in S𝑝𝑎𝑟𝑡 .

619

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang

(3) To remove noisy tags from S𝑝𝑎𝑟𝑡 , we only keep the tags

that are significantly relevant to build systems. We use two metrics

𝑠𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑐𝑒 and 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 from previouswork [8, 30] and calculate

for each tag 𝑡 in T𝑐𝑎𝑛𝑑 with Equations 1 and 2. A tag 𝑡 is significantly

relevant to build systems if its two metrics are higher than specific

thresholds. To avoid omitting relevant tags, we adopt the lowest

thresholds used in previous work [8] and only the tags whose

significance is higher than 0.005 and whose relevance is higher

than 0.05 are kept in T𝑐𝑎𝑛𝑑 . At last, the first two authors manually

inspect each remaining tag in T𝑐𝑎𝑛𝑑 and remove the ones irrelevant

to build systems; and besides three initial tags, the final tag setT𝑓 𝑖𝑛𝑎𝑙
consists of extra 15 tags, such as “build.gradle”, “gradle-plugin”,
“gradlew”, “pom.xml” and “m2eclipse”.

𝑆𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑐𝑒 (𝑡) =
|{𝑝 |𝑝 ∈ S𝑝𝑎𝑟𝑡 ∧ 𝑝 𝑤𝑖𝑡ℎ 𝑡}|

|S𝑝𝑎𝑟𝑡 |
(1)

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 (𝑡) =
|{𝑝 |𝑝 ∈ S𝑝𝑎𝑟𝑡 ∧ 𝑝 𝑤𝑖𝑡ℎ 𝑡}|
|{𝑝 |𝑝 ∈ S𝑎𝑙𝑙 ∧ 𝑝 𝑤𝑖𝑡ℎ 𝑡}| (2)

All the posts with at least one tag in T𝑓 𝑖𝑛𝑎𝑙 are regarded as

build-related posts.

Step 3: refine dataset. To ensure the quality of selected posts

and to reduce the ambiguity in following analysis, we further filter

the selected posts by only keeping the ones with an accepted answer,

which is the answer marked as accepted by the questioner. Out

of the remaining 25,814 posts, we randomly select a statistically

significant sample ensuring a 95% confidence level ± 5%. The final

dataset for our study consists of 1,080 posts (i.e., 336 for Ant, 370
for Maven, and 374 for Gradle).

3.2 Manual Labelling
Each post in the dataset is manually classified as false positive (i.e.,
it is unrelated to build issues or its accepted answer is useless ac-

cording to the questioner’s additional comments) or assigned a set

of labels describing (i) the how-to topic, which is the summariza-

tion of the how-to question description, (ii) the failure symptom,

which shows what the failure looks like according to the question

description, and (iii) the fix pattern, which tells how a build issue

is fixed distilled from the accepted answer. Each of these labels is

optional. In particular, if the post is raising a how-to question (e.g.,

asking help to implement a specific build task or discussing con-

ceptual build knowledge) rather than an encountered build failure,

only the how-to topic label is necessary for such a how-to question;
otherwise, for the post with a concrete build failure encountered

by the questioner, it is labelled with both the failure symptom and

the fix pattern.
The manually labelling is conducted following an open coding

procedure [24] by the fist two authors with 5-year experience of soft-

ware development. Moreover, we synchronize the label set among

participants. In particular, the two authors independently tag each

issue assigned to her with an existing label from the current label

set or create a new label when the issue cannot be categorized to

any existing label. The newly-created label is instantly updated

into the label set and can be used by other participants then. Al-

though, in principle, this is against the notion of open coding, little

is known about general-type build fixing and the granularity of

previous error category is too coarse in our study. Hence, to avoid

the number of labels from growing excessively, following previous

studies [4, 16], we adopt the compromise without introducing sub-

stantial bias. In this process, the conflict ratio between two authors

is 25.65%.

In the cases where there is a conflict between the two authors, a

third arbitrator who is practised in build knowledge with 7 years

of build system experience, would be introduced to label the issue.

In case of further disagreement among the three participants, the

conflicts are discussed and solved among all participants. We follow

this rigorous procedure until all issues reach agreement and the

final label results are checked by all participants.

Through the preceding process, except the 171 false positive

posts, 444 how-to posts are labelled with how-to topics and 465

build failures are labelled with symptoms and fix patterns. To an-

swer RQ1, we analyze 444 how-to posts and distill the frequent

topics in Section 4. For RQ2, we construct a taxonomy of build

failure symptoms based on the labels. All the authors proceed to

group similar codes into categories and create a hierarchical taxon-

omy of challenges. The grouping process is iterative, in which they

continuously go back and forth between categories and questions

to refine the taxonomy. The frequent and non-trivial symptom cat-

egories in our taxonomy are discussed in Section 5. For RQ3, we

study the characteristics of fix patterns for each symptom category

in Section 6. For convenience, we list the main findings and impli-

cations drawn from this paper (including RQ1, RQ2, and RQ3) in

Table 1.

Others 2.29%

Build Tool 2.20%

Multi-modules 2.25%

IDE 3.37%

Grammar
27.25%

Common Task

19.14%
I/O

13.51%

Dependency

12.61%

Plugin
6.08%

Environment 2.25%

Command
Line 8.56%

Keyword
13.06%

Variable
Access

7.88%

Condition
4.28%

Assemble
5.45%

Compile
2.25%

Deploy
4.28%

Resource
3.38%Test

2.92%

Authorization 0.90%

Directory/File
11.26%

Include
7.76%

Setting
2.25%

Exclude
2.20%

Log
2.25%

Conflict 0.37%
DS
2.03%

Figure 3: Topics in how-to build issues

4 HOW-TO TOPICS IN BUILD ISSUES (RQ1)
Figure 3 shows the hierarchical how-to topics in build issues with

corresponding percentages. According to the figure, we observe a

high diversity in how-to topics that developers ask, which can be

grouped into 11 high level categories.

Grammar is the topic asked most frequently (27.25%) by develop-

ers: specifically, 13.06% of the questions are about the usage of the

default keywords in the build script language; 7.88% are about how

620

Understanding Build Issue Resolution in Practice: Symptoms and Fix Patterns ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

to access (i.e., write/read) variables in a build script; 4.28 % of the

questions ask for code examples of conditions (e.g., loop/if-else);

and the rest are questions on the data structure (e.g., array itera-

tion). Besides, 19.14% how-to questions are about the difficulties

that developers encounter when they attempt to write build code

to implement common build tasks (e.g., compile, test, deploy, or

assemble); a non-negligible number (13.51%) of questions are re-

lated to file system operations, since resource arrangements occur

frequently during the build process; 12.61% are concerned about

customizing dependencies to the project; 6.08% questions are on the

usage of specific third-party plugins; and 8.56% of the questions are

about the interoperability between the build system and the com-

mand line (e.g., “how to pass parameters in command line to the build
process?”). The questions vary from naive puzzles (e.g., grammar)

to very particular problems (e.g., usage of some specific plugin). It

may attribute to the co-existence of novices’ and experts’ posts on

Stack Overflow, both of which are important and noteworthy.

Overall, most (80.84%) questions are about build script program-

ming, indicating that a non-trivial number of developers have dif-

ficulties in writing a complete version of build scripts for their

projects. Hence, build script generation or completion tools are

helpful for developers in programming build scripts, where mod-

ern code generation techniques [11, 15, 31] may be adopted since

build scripts are often semi-structured and most build tasks can be

specified concisely. Furthermore, we observe that developers com-

plain about documents and tutorials in their SO posts (e.g., “Neither
the documentation had any sort of straightforward example...” [1]),
indicating that the completeness, usability, and readability of docu-

ments in third-party plugins, dependencies, and build tools should

be improved [4]. In addition, to a certain extent, the how-to topics

with high frequency imply the build components that developers

are unfamiliar with, which are vulnerable and subject to introducing

defects in the further build script evolution.

For RQ1, see Findings F.1 and F.2, as well as Implications
I.1 and I.2 in Table 1.

5 SYMPTOMS OF BUILD ISSUES (RQ2)
5.1 Taxonomy and Distribution
Figure 4 shows the hierarchical taxonomy of symptoms manually

constructed in our study. Nodes are in descending gray-level along

with their depth in hierarchy (e.g., leaf nodes are in white). Each

leaf node represents a category and its non-white parent node that

consists of multiple categories is an inner-category. For example,

download error (C.1) is an inner-category that can be further divided
into two categories: connection error (C.1.1) and license error (C.1.2).
The number in the top right corner refers to the number of issues in

that category. In total, our taxonomy consists of 15 inner-categories

and 50 categories. The broad scope of build error types indicates

the prevalence and the diversity of build failures. We next discuss

categories by groups according to their belonging inner-categories.

Due to space limit, we only address the frequent and non-trivial

categories, and the complete explanations for each category are on

our website [3].

Parse (B). It is a build stage where the build system validates the

build script prior to executing build tasks, and 15.48% of the build

issues occur in the parsing phase. All the previous studies [22, 26]

lump parsing issues together as one group, while our taxonomy

further classifies them into 7 categories regarding to their error

symptoms. Illegal symbol (B.1) errors cover 59.72% parsing issues

and they are triggered when the build system fails to resolve char-

acters in the build script (e.g., undefined keywords, properties or

tasks). Besides such grammar check, the build system also validates

the presence of necessary artifacts such as embedded properties and

project modules, and interrupts when the property is not initialized

(i.e., missing property (B.4)), modules are not correctly recognized

(i.e., module resolution error (B.5)) , or the value of the property is

invalid (i.e., property value resolution error (B.7)).
Dependency resolution (C). It is an essential step in the build

process and responsible for preparing necessary dependencies di-

rectly or transitively specified by developers, which covers 19.57%

build issues. All the previous studies [27, 34] classify dependency-

related issues into one large group and regard them as a big concern

in build activities; on this basis, our taxonomy further derives 4

finer categories within dependency-related failures. Dependency
findability error (C.3), the most frequent category in the dependency

resolution phase, occurs when the required dependencies cannot

be found in the specified location (e.g., remote, central, or local

repository). Conflict error (C.2) is triggered when a project relies on

different versions of the same library. Usually developers would not

simultaneously use multiple versions of one dependency, but it is

difficult for them to be aware of the hidden transitively-dependent

relationship among dependencies, which actually causes the con-

flict issue. These two common error types cover 91.43% dependency

resolution issues while the rest are caused by connection error (C.1.1)
and license error (C.1.2) triggered in the unsuccessful dependency

downloading process.

Resource processing (E). It covers the build failures triggered

in processing resources. Half of the resource processing issues are

acccessibility error (E.1), which is triggered when the build system is

unable to find the specified resources. Besides, some resources are

not originally embedded within the project and need to be gener-

ated or merged. Therefore, we classify these issues into categories

generation error (E.2) and merge error (E.3), respectively. Further-
more, when the build system parses resource files and finds any

violation, format error (E.4) is triggered.
Compilation (F). It covers a non-negligible part (12.04%) in

build issues. A small ratio (16.07%) of compilation issues are re-

ported by the build system. For example, when the build system

is unable to load compilers (i.e., compiler loading error (F.1)) or un-
able to load specified files for compilation (i.e., source file loading
error (F.2)). The rest issues (83.93%) in the compilation phase are

errors thrown by the compiler (i.e., compiler error (F.3)). For exam-

ple, unsupported operator (F.3.3) (i.e., the current Java version is

not compatible with the used operators) and source code encoding
error (F.3.2) are the errors detected by a compiler when it is parsing

the source code. We observe that most errors (82.98%) reported

by a compiler are symbol resolution error (F.3.1), which refers to

the cases that symbols (e.g., variable, class, method or package) in

source code cannot be resolved by the compiler, usually with error

messages as cant.resolve or doesnt.exist. This observation is

consistent with the finding in the previous work [32].

Assemble (G). It is a collection of tasks that process the com-

piled files and package them into distributable or executable formats

621

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang

Build Issues

[B] Parse

[B.1]
Illegal symbol

[B.2]
Obsolete API

[B.3] Build script
encoding error

[B.4] Missing
property

[B.5] Module
resolution error

[B.6]
Project attribute
resolution error

[B.7]
Variable value
resolution error

[D] Plugin resolution

[D.3] Plugin
apply error

[D.2] Plugin
cover error

[D.1] Plugin
findability error

[A] Initialization

[A.1]
Memory error

[A.2] Tool
loading error

[A.3] Execution
permission error

8

5 21 43 7 2 6 6 4 4

[C] Dependency resolution

[C.1]
Download error

[C.2]
Conflict error

[C.1.2]
License error

[C.1.1]
Connection error

[C.3] Dependency
findability error

[E.1]
Accessibility error

[E.2]
Generation error

[E.3]
Merge error

[E.4]
Format error

[E] Resource processing

[G] Assemble

[G.3]
Broken file

[G.2]
Missing file

[G.4]
Process aborting

[G.1]
Duplicated file

[H.2] Test
run-time error

[H] Test

[H.1] Test
loading error

[K.3] Document
generation error

[K.2] I/O
Compression

error

[K.4]
Other plugins

[K.1] Code
analysis error

[K] Extra plugin execution

[M.3] Project
import error

[M.1]
Compatibility

error

[M.2] Character
resolution error

[M] IDE Interoperability

[N] External
executable

error

8

[F.2] Source file
loading error

[F.3.3]
Unsupported

Operator

[F.3.1]
Symbol

resolution error

[F.1] Compiler
loading error

[F.3.2] Source
code encoding

error

[J] Non-error issue

[J.1]
Unexpected

output

[J.2]
Performance

issue

[I] Deploy

[I.1] Server
Install error

[I.2] Server
Connection

Error

[L] Output Execution

[L.4] Other
run-time error

[L.1] Class
loading error

[L.2] Java version
compatibility error

[L.3] Missing
referred file

[F.3.4]
Others

[F.3] Compiler
Error

[F] Compilation

[J.3]
Memory

issue

72

465

91

6

4 2 59

26

56

5 4

47 3

39 3 2

67

1744 3 3

18

2214

38

18 5 3 12

8313

24

24

2 18 4 8

22 84

16

12

7 5

12

8

4

20

34310

Figure 4: Taxonomy of symptoms in build issues

(e.g., Jar, War, Ear, or Apk). The assemble stage breaks down when

there are duplicated, missing, or broken files (G.1, G.2, and G.3, re-
spectively). Besides, 31.58 % assemble issues result in an unexpected

exit (i.e., process aborting (G.4)), which means that the packaging

process interrupts abnormally. For example, the assemble process

of Android applications often breaks down when there are excess

.dex files.

Non-error issue (J). It is concerned about the build issues with
implicit symptoms rather than explicit error message (i.e., “build

failure”). For example, performance issue (J.2) and memory issue
(J.3) contain the builds that abnormally occupy too much time or

too large memory space. Unexpected output (J.1) refers to the cases

where the output of certain build task is not as expected although no

error is triggered during that build task. For example, the developer

assigns Jacoco plugin to collect and report dynamic test coverage

during the build process; although the build finishes successfully,

the generated report is incomplete with missing coverage results

for some tests.

Extra plugin execution (K). Considering the large number of

third-party plugins, except the plugins for common build tasks

(e.g., resource processing (E), compilation (F), test (H), deploy (I),

and assemble (G) as listed in our taxonomy), we group the build

failures triggered during the execution of the other plugins into

this inner-category. These build failures are further classified into

finer categories regarding to their functions. For example, code
analysis (K.1) covers the build failures triggered by plugins for

conducting code analysis (e.g., static code analysis or dynamic

coverage collection); document generation error (K.3) covers the
errors thrown by plugins for generating documents (e.g., Javadoc).

Given the diversity of plugins in the wild, instead of enumeration,

an extendable category other plugins (K.4) is used to contain the

rest issues.

Output execution (L). Some build-related issues do not trig-

ger build failures explicitly during the build process, but generate

problematic outputs (e.g., compiled class file, assembled jar, or exe-

cutable application) that fail to work properly. We group such issues

as output execution (L). In other words, these issues are actually

build failures with delayed exposure. Note that such build failures

are often neglected by the previous studies on build failures [26, 27],

since their analysis only keeps the build issues with explicit error

symptoms during the build process. After inspecting the various

run-time exceptions and errors thrown during the output execu-

tion, we find that 67.69% of them are related to class loading error
(L.1), which consists of two symptoms: ClassNotFoundException
and NoClassDefFoundError. They occur when the Java Virtual

Machine is unable to find a particular class at run-time and we

group these two symptoms together, because in many cases they

are nested with each other and essentially they are both caused

by missing classes during run-time. Class loading error (L.1) often
stems from the missing or incorrect dependencies in the assemble

or compilation phases, and more details and examples of their root

causes will be discussed in Section 6. Furthermore, when the Java

versions in run-time and compilation phases are inconsistent, Java

622

Understanding Build Issue Resolution in Practice: Symptoms and Fix Patterns ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

version compatibility error (L.2) is triggered; and inaccessible re-

ferred files during run-time inducemissing referred file (L.3). Due to
their delayed exposure, output execution issues increase developers’

efforts in solving build problems.

IDE interoperability (M). The interoperability between IDE

and build frameworks may also induce build issues. In this study,

we observe such symptoms on most mainstream IDEs, such as

Android Studio, Eclipse, and IntelliJ. Most interoperability issues

(75.00%) are character resolution errors (M.2) when the build script

cannot be resolved properly in IDE (e.g., an unresolved character

is often addressed by a red underline). Compatibility error (M.1)
is triggered when IDE is incompatible with the current version

of the build system. When IDE fails to import an existing project

that is already built with a build framework, IDE reports a project
import error (M.3). Interoperability build issues are often occurring

and resolved in developers’ local work space and therefore they

are seldom included in previous studies [22, 29] that are based on

historical or reproduced build data.

For RQ2, see Findings F.3 F.4 and Implications I.3 I.4 in
Table 1.

5.2 Discussion
5.2.1 Comparison to Previous Studies. Several studies have inves-
tigated error types of build failures driven by different research

goals. For example, Kerzazi et al. [17] interviewed developers in

a company to investigate circumstances, under which the build

process was broken in the lense of human factors. Given the preva-

lence of continuous integration (CI), there are emerging studies

investigating build breakages in the CI scenario: Vassallo et al. [29]
compared different error types of CI in open-source and closed-

source projects; Zolfagharinia et al. [34] investigated environmental

impacts on CI error types of CPAN projects. Besides CI, there are

studies [13, 26, 27] investigating build issues under the traditional

build scenario. For example, Hassan et al. [13] inspected 91 build

issues to explore the feasibility of automatic build.

Table 2 lists all the studies related to general build issue clas-

sification. The column “Dataset attributes” shows project types

(closed-source or open-source), build scenarios, and build systems

involved in their datasets; the column “Label process” shows how

these studies label each build failure in their datasets to derive the

categorization. Specifically, “Automated label” means that the study

utilizes text processing techniques to automatically extract labels

from build failure logs to label each build failure; “Manual label”

means that each build failure is labelled via manual inspection. The

column “Size” counts the number of categories in the taxonomy and

the last column presents the frequent error types in their findings.

Overall, we observe that our taxonomy differs from previous

studies in terms of granularity, diversity, and distribution. (i) Our
taxonomy is derived at a finer granularity so that the corresponding

fix patterns within each symptom category would be more uniform.

It helps understand developers’ resolution behaviours on different

build failures. Note that a fine-granularity taxonomy is not always

necessarily practicable in all studies, which is dependent on the

1
The company adopts one central build server acting as build controller and four build

Agents in the build process.

research goal and the categorization methodology (automated or

manual label). (ii) We observe that our taxonomy covers extra cat-

egories that are absent in previous studies. The reason might be

that our dataset is mined from build issues posted by developers on

SO while previous studies are based on build history data in CI or

reproduced data in traditional build scenario. The latter inherently

filters out the build issues without explicit failure symptoms during

the build process. (iii) Another difference lies in the frequency dis-

tribution of the categories in our taxonomy, which is not identical

with previous ones. Actually as shown in the column “Frequent

categories”, almost every study derives different frequent categories.

The biggest reason for the inconsistence may stem from the under-

lying datasets. Different sources, build scenarios and build tools all

attribute to the different distribution of frequent failure types. As

shown in the table, analyzing build issues from SO, our taxonomy

inherently is not limited to open or closed source projects, CI or

traditional build scenario. Furthermore, the frequent error types

identified by previous studies may be those that occur most fre-

quently in build activities, while the frequent error types identified

by our study tend to be the issues hard to solve, since SO posts are

often composed by the problems developers cannot resolve at first

glance.

5.2.2 Evaluation of the Taxonomy. In the previous section, we il-

lustrate the difference of our taxonomy compared to the previous

work. Note that we are not to judge which taxonomy is better,

since as aforementioned, all the taxonomies are driven by different

research goals. In this work, our goal is to understand build issue

resolution in practice. Therefore, we evaluate our taxonomy against

the latest taxonomy proposed by Hassan et al. [13] in terms of this

goal. We further construct another sample of 150 SO posts from the

remaining dataset, categorize them according to our taxonomy and

Hassan’s, respectively, and then calculate the following measure-

ments as suggested in previous work [21]. The numbers before and

after “/” refer to the results on our taxonomy and Hassan’s respec-

tively. We find that (i) 10%/49% of issues cannot fit in any category;

(ii) 14%/36% categories have no issues; (iii) there are 3.1/7.2 fixing

patterns on average in each category. The results demonstrate that

our taxonomy has less categorization errors and the smaller number

of fix patterns in each category indicates the better performance in

facilitating failure resolution.

5.2.3 Different Views of the Taxonomy. Our taxonomy is primarily

derived based on the issue-triggering phases and the manifested

symptoms. Actually there can be various aspects to analyze build

issues (e.g., incremental/full, local/remote, and system/user), and

thus we further discuss our taxonomy with different views. For

example, build issues can be generally categorized into system

errors or user errors. The former refers to the issues associated

with incorrect functioning of the build tool itself (e.g., Ant), and the
latter refers to the issues caused by artifacts outside the build tool

(e.g., dependencies or user configuration). Within our taxonomy, we

can observe that some categories are purely related to system errors

(e.g., all issues in Tool loading error can be resolved by the build

tool itself), while some categories are the mixture of both errors

(e.g., issues in Illegal symbol are probably caused by changing the

build tool or syntax errors from users). Overall, most build issues

are resulting from developers. Moreover, we also find that different

623

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang

Table 2: Summary of previous studies related to build issue categories

Study Dataset attributes Category attributes Frequent categoriesSource Build scenario Build system Label process Size
Kerzazi et al. [17] Closed Continuous integration Industrial system

1
Interview 3 Missing files; mistaken check-in

Tufano et al. [27] Open Traditional scenario Maven Automated label 3 Dependency

Sulír et al. [26] Open Traditional scenario Maven; Ant; Gradle Automated label 12 Dependency; compilation

Vassallo et al. [29] Open; Closed Continuous integration Maven Automated label 20 Test; release preparation

Rausch et al. [22] Open Continuous integration Maven; Gradle Automated label 14 Test; code quality; compilation

Zolfagharinia et al. [34] Open Continuous integration CPAN Manual label 13 Dependency; undefined variable

Hassan et al. [13] Open Traditional scenario Maven; Ant; Gradle Manual label 14 JDK incompatibility; build tool

This work
Open;

Closed

Traditional scenario;

continuous integration

Maven; Ant; Gradle Manual label 50

Dependency; parse; compilation;

output execution; assemble

operating platforms may cause different fix patterns. Although we

observe only a small number of such cases (i.e., less than five),

it is interesting to further investigate the impact from different

platforms (e.g., operating systems) on build issue resolution.

6 FIX PATTERNS OF BUILD ISSUES (RQ3)
To capture how developers fix different types of build issues, in

this section, for each symptom category, we summarize their fix

patterns in Table 3. The columns “Inner-category” and “Category”

are consistent with our taxonomy in Figure 4 and the number in

parentheses is the number of build issues in that category. The

column “Category description” briefly describes the symptom cate-

gory, the column “Fix pattern description” presents the fix pattern

and the last column “#Issues” is the number of issues fixed by that

pattern. Take the first row in the table as an example, out of the 8

issues in inner-category initialization (A), 5 issues belong to tool
loading error (A.2) and all of them are fixed by changing the version

of the build tool. Due to space limit, we do not list the patterns with

low frequency (i.e., #Issues < 3) and the complete list of all patterns

can be found in our website[3].

Overall, we observe complicated crossovers between different

fix patterns and symptom categories, confirming that build failure

resolution is a challenging problem. Meanwhile, the average num-

ber of fix patterns in each category (i.e., 3.08) is much less than

in each inner-category (i.e., 7.36), indicating that our taxonomy

potentially divides build failures with different causes into different

small groups, which supports the necessity and validity of our fine-

granularity taxonomy derived in RQ2. We next discuss the main

findings and implications as following.

6.1 Prevalent Fix Patterns Across Symptoms
Although the number of symptom categories and fix patterns is

large, there are prevalent patterns that can fix multiple symptom

categories. We find that 67.96% of the build issues are fixed by

repairing the build script code related to the components plugin
and dependency, and these build issues cover 37 out of 50 (74.00%)

symptom categories in our taxonomy.

In addition, we use Figure 5 to show the frequency of each fix pat-

tern on each inner-category. X axis represents each inner-category

and the letter identifier is consistent with our taxonomy in Figure 4;

Y axis shows fix patterns
1
following with their total frequency.

1
Due to space limit, patterns with total frequency < 5 are not shown in the figure.

Figure 5: Distribution of fix patterns on inner-categories

The figure shows the overall trend more intuitively but at a price

of detailed information loss compared to Table 3. In Figure 5, we

can also observe that the patterns related to plugins and depen-

dencies cover a broad scope of inner-categories. In particular, fix

patterns related to plugins (e.g., correcting plugin option or adding
missing plugin) cover build issues in 31 categories. For example,

correcting plugin option fixes 28 categories and 18.27% build issues,

which is the most frequently-used fix pattern. Patterns on script

code related to dependencies cover 21 symptom categories: adding
missing dependency covers 12 categories and fixes 13.54% build is-

sues; correcting dependency version, adding searching repository, and
excluding conflict dependency fix 7.10%, 7.10%, and 6.67% of build

issues, respectively. It implies that defective script code in plugin

setting and dependency declaration is a major cause for build issues.

The analysis of prevalent fix patterns across symptoms is sum-

marized by Finding F.5 and Implication I.5 in Table 1.

6.2 Frequent Pairs of Fix Patterns and
Symptoms

From Table 3, we observe that there exist frequent pairs of patterns
and symptom categories, which indicates that given a symptom

category, most issues in that category can be fixed by a specific

pattern.

In Table 3, we find that for 20 symptom categories, more than

half of its build issues can be fixed by a specific pattern, and we

regard such combination of symptom category and fix pattern as a

frequent pair. For example, 30 out of 43 illegal symbol (B.1) issues
are resolved by fixing syntax error ; 19 out of 26 conflict errors (C.2)

624

Understanding Build Issue Resolution in Practice: Symptoms and Fix Patterns ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 3: Frequent fix patterns of each category

Inner-category Category Category description Fix pattern description #Issues

[A] Initialization (8) [A.2] Tool loading error (5) Unable to launch build tool Change build tool version 5

[B] Parse (72)

[B.1] Illegal symbol (43)

Keywords or variables (e.g., property, task, or me-

thod) cannot be resolved

Fix syntax error 30

Change build tool version 11

[B.2] Obsolete API (7) Deprecated API is in build script Change plugin version 6

[B.4] Missing property (6) Property without default value is not initialized Correct relative location of modules 3

[B.5]Module resolution error (6) Resolution error during configuring modules Correct relative location of modules 5

[B.6] Project attribute resolution error (4) Project attribute (e.g., build type) is invalid Correct project build type 4

[C] Dependency

resolution (91)

[C.1.1] Connection error(4) Connection timeout due in dependency download Fix build tool proxy setting 3

[C.2] Conflict error (26)

Multiple versions of the same dependency are re-

quired simultaneously

Exclude conflict dependency 19

Change dependency version 4

[C.3] Dependency findability error (59)

Unable to find the required dependency in the sp-

ecified remote/central/local repository or local lo-

cation

Add searching repository 29

Change dependency version 9

Change dependency identifier 8

Correct dependency local location 7

Correct dependency usage setting 3

[D] Plugin

resolution (24)

[D.1] Plugin findability error (13)

Unable to find the required plugin in remote/local

/central repository

Add plugin declaration 4

Change plugin version 3

Add searching repository 3

[D.2] Plugin cover error (3) Plugin execution is not specified in build lifecycle Specify plugin execution phase 3

[D.3] Plugin apply error (8) Unable to apply plugin Change build tool version 5

[E] Resource

processing (20)

[E.1] Accessibility error (10) Unable to find the required resource

Correct plugin𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 option𝑣𝑒𝑟𝑠𝑖𝑜𝑛 5

Add missing resource in project 4

[F] Compilation (56)

[F.3.1] Symbol resolution error (39)

Cannot resolve symbol (e.g., variable, class meth-

od or package) that does not exist

Add missing dependency 19

Fix source code 5

Change dependency version 4

Correct dependency usage setting 3

[F.3.2] Source code encoding error (3) Encoding format error in parsing source code Set plugin𝑐𝑜𝑚𝑝𝑖𝑙𝑒 option𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 3

[F.3.3] Unsupported operator (3) Compilation compatibility error Set plugin𝑐𝑜𝑚𝑝𝑖𝑙𝑒 option𝑠𝑜𝑢𝑟𝑐𝑒/𝑡𝑎𝑟𝑔𝑒𝑡 3

[G] Assemble (38)

[G.1] Duplicated file (18) Multiple or conflict files are found

Exclude redundant files 9

Exclude conflict dependency 3

[G.2] Missing file (5) Cannot find required files Set plugin𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 option𝑝𝑎𝑡ℎ 3

[G.4] Process aborting (12) Package process is interrupted abnormally Set plugin𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 option𝑒𝑛𝑎𝑏𝑙𝑒 7

[H] Test (12) [H.1] Test loading error (7) Unable to load tests Set plugin𝑡𝑒𝑠𝑡 option𝑐𝑙𝑎𝑠𝑠𝑝𝑎𝑡ℎ 4

[L] Output

execution (67)

[L.1] Class loading error (44)

Run-time exceptions (e.g., ClassNotFound or No-
ClassDef) are triggered during class loading

Add missing dependency 22

Change dependency version 7

Exclude conflict dependency 4

Correct dependency usage setting 3

are fixed by excluding conflict dependency; and 22 out of 44 class
loading errors (L.1) are fixed by adding missing dependency. Besides,
as shown in Figure 5, the darker cells also confirm that specific

fix patterns are clustering in different inner-categories. Therefore,

heuristic strategies for build failure resolution can be derived from

these frequent pairs.

The analysis of frequent pairs of fix patterns and symptoms is

summarized by Finding F.6 and Implication I.6 in Table 1.

6.3 Case-by-case Fix Patterns for Symptoms
In spite of the existence of prevalent fix patterns and frequent pairs,

many symptom categories (30 out of 50) do not have common fixing

strategies and are fixed by case-by-case patterns. Specifically, the

number of fix patterns in each category varies from 1 to 10 and the

average number is 3.08. For example, there are 10 fix patterns for the

symptom symbol resolution error (F.3.1), 10 patterns for dependency
findability error (C.3) and 8 patterns for class loading error (L.1)2.
Furthermore, 115 build issues are fixed by a pattern different from

the other issues that are in its same category. To a certain extent,

this observation explains why manually build issue resolution is

2
Recall that we do not list less frequent patterns due to space limit and the complete

pattern list is on our website [3].

challenging, which requires developers’ comprehensive knowledge

and experience in various cases of failure resolution. Additionally,

it may also explain why the state-of-the-art automated build reso-

lution techniques are not that effective. Compared to the overall

cases, their fixing strategies only cover a tip of the iceberg, and

more fixing strategies may be included according to the massive

corner fixing cases derived from our results.

The analysis of case-by-case fix patterns is summarized by Find-
ing F.7 and Implication I.7 in Table 1.

6.4 Challenges in Simplistic Fix Patterns
According to our statistics, 79.78% build issues are fixed by a few

lines of modification on build script code (i.e., within 10 lines).

Particularly, the pattern changing dependency version, correcting
plugin option or correcting plugin version often involve only one-line
modification. Notwithstanding that, there is a knowledge gap for

developers to transform fix patterns (template) into concrete fix

patches
3
.

For example, in process aborting (G.4) category, 7 build issues can
be fixed by enabling a specific option in the plugin for assemble (i.e.,

3
A pattern is an abstract template while a patch is concrete and ready-for-use

modification.

625

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang

correcting plugin𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 option𝑒𝑛𝑎𝑏𝑙𝑒). As shown in the Example

(a) (i.e., the #35890257 post on SO), the assemble phase is interrupted

due to the abnormal process abortion. According to the developers’

discussion in this post, the root cause is the large number of .dex

files; and setting multiDexEnabled to True can prevent the build

process from abortion. multiDexEnabled is an option in Android
plugin while most questioners of this failure symptom are unaware

of the function of this option. To sum up, a third-party plugin

usually has many options, e.g., Android plugin has 82 options,

which require massive open knowledge for developers to solve

plugin-related build issues.

Question Description:
com.android.build.api.transform.TransformException
Process command finished with non-zero exit value 1.

Fix Pattern: correct plugin option
Patch:
+ multiDexEnabled true

Symptom: process aborting (G.4)

Example (a) - 35890257

Therefore, although most patterns are simplistic, they are asso-

ciated with different third-party libraries and the libraries always

keep evolving and updating their features, which is challenging for

a manual follow-up. Although build fixing techniques may relieve

such manual efforts by embedding as much domain knowledge as

possible in advance, considering the timeliness, the fixing strategies

have to be dynamically updated to keep stable effectiveness since

the external resources (dependencies/plugins) are evolving all the

time. For example, the history-based failure fixing technique Hire-

build [14] is less half effective when it is evaluated one year later

with the original training set [18] and the timeliness may partly

attribute to it.

The challenge in simplistic fix patterns is summarized by Find-
ing F.8 and Implication I.8 in Table 1.

6.5 Challenges in Non-intuitive Fix Patterns
We observe that many fix patterns are non-intuitive for the given

symptom category and developers often face difficulties in realizing

the root causes behind these build issues.

For example, for 7 build issues in obsolete API (B.2), surprisingly
they are not caused by the direct usage of the deprecated API;

instead, some plugin transitively uses that obsolete API, which

is often neglected by developers. In other words, developers ap-

ply a third-party plugin, which uses an obsolete API indirectly.

In Example (b), a developer encounters an obsolete API warning

and confidently claims that the obsolete API is never used by her-

self in the build script. Actually, the older version of the plugin

com.google.gms:google-services uses this deprecated API; and
upgrading the plugin to a new version can resolve this issue.

Besides, half of the issues inmissing property (B.4) are not caused
by the absence of property declaration but caused by the incorrect

relative path among modules. In Example (c), although the error

message is reporting missing property and the developer is pretty

sure that the property is already written in the script code, the root

cause is the incorrect relative location of modules. Because there

are inherited properties between the parent module and the child

Question Description:
Configuration 'compile' is obsolete’
“I tried to look for "compile " in the whole project but no match was found”

Fix Pattern: change plugin version
Symptom: obsolete API (B.2)

Patch:
- Classpath 'com.google.gms:google-services:3.1.1’
+ Classpath 'com.google.gms:google-services:3.2.0’

Example (b) - 48709870

module, an incorrect relative location declaration can prevent the

build system from resolving the value of the inherited property.

Question Description:
dependencies.dependency.version is missing

“I check pom but there are the version written”

Patch:
+ <parent>
+ … <relativePath> … </relativePath> …
+ </parent>

Fix Pattern: correct relative location of modules
Symptom: obsolete API (B.2)

Example (c) - 20424245

Furthermore, most issues in class loading error (L.1) are also

fixed by non-intuitive patterns. In the Example (d), the developer

complains that the build process is successful but the generated

application does not run successfully by reporting the class load-
ing error (L.1). It is difficult for the developer to learn that this

error comes from the building process because class loading er-
ror (L.1) is a type of build errors with “fake” successful build sta-

tus but exposed after build (discussed in Section 5). In this ex-

ample, the root cause is that the dependency library json is not

included in the compilation phase and thus adding it can resolves

the ClassNotFoundException issue.

Question Description:
Java.lang.ClassNotFoundException

“mvn clean package and everything builds successfully, but
when I try to run it, I get error…”

Patch:
+ <dependency><groupId>org.json</groupId>
+ <artifactId>json</artifactId>
+ <version>20090211</version></dependency>

Fix Pattern: add missing dependency

Example (d) - 15951032

Symptom: class loading error (L.1)

The challenge in non-intuitive fix patterns is summarized by

Finding F.9 and Implication I.9 in Table 1.

7 THREATS TO VALIDITY
A major threat to validity is that we only use Stack Overflow as the

data source to study how developers resolve build issues. Although

the study is based on a representative sample of SO posts and SO

posts have been widely used in previous work [5, 7, 8, 10, 23, 30, 33],

there could be build issues that are never discussed on SO. In other

words, we cannot guarantee the generalizability of our observations

due to the bias induced by single data source. In the further, we

plan to extend our study in more data sources (e.g., Github) and

build systems to further validate our findings.

Another threat lies in the construction of the tag set which

we utilize to extract build-related SO posts. We cannot guarantee

the tag set is complete since the thresholds chosen for the metrics

𝑠𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑐𝑒 and 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 may overlook some tags related to build

626

Understanding Build Issue Resolution in Practice: Symptoms and Fix Patterns ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

issues. To mitigate this threat, we adopt the smallest threshold

values used in previous work [8] to firstly include as many related

tags as possible, and then we refine the tag set by further manual

inspection to ensure the precision. In addition, to eliminate the false

positive resulting from automatically extracting posts with selected

SO tags, the first two authors of this paper manually label these

posts.

In addition, the possible subjectiveness introduced during the

manual analysis might induce bias in the results. To mitigate this

threat, we ensure each data item is labelled by at least two authors

with a third arbitrator resolving the conflicts and inspecting all

final results.

8 RELATEDWORK
As this paper targets at the understanding of build-issue resolution,

it is very related to both the work on build failures and build fixing.

8.1 Build Failures
Build failures have been extensively studied in recent years. Kerzazi

et al. [17] interviewed developers to study why build breakages are

introduced in an industrial case. Tufano et al. [27] investigated build
errors inMaven projects and Sulír et al. [26] studied error categories
in open source Java projects built withMaven, Ant and Gradle . Has-
san et al. [13] inspected 91 build issues to explore the feasibility

of automatic build. With the prevalence of continuous integration

(CI), there are emerging studies investigating build breakages in CI

scenario. Rausch et al. [22] studied the factors affecting CI build er-

rors in open-source Java projects. Vassallo et al. [29] compared the

build errors in open-source CI and closed-source CI. Zolfagharinia

et al. [34] investigated the environmental impacts (REs and OSes)

on CI build failures in CPAN projects. Besides general build failures,

several studies focused on specific type of build failures. Seo et
al. [25] performed a large scale study on compiler errors in build

process at Google; Zhang et al. [32] further investigated compiler er-

rors on open-source Java projects in continuous integration; Beller

et al. [9] investigated build breakages related to testing on TRAVIS

CI; Ghaleb et al. [12] studied the build issues with long duration.

Different from existing studies, we conduct the first compre-

hensive study on build failures by mainly focusing on fix patterns;

meanwhile, to characterize patterns precisely, a fine-granularity

taxonomy of build failure symptom is derived in our study and

the difference with previous studies is discussed detailedly in Sec-

tion 5.2.1. Furthermore, in this work, we also summarize frequent

topics developers ask frequently about build issues, indicating the

challenges developers encounter in build activities.

8.2 Build Fixing
The prevalence of build failures has inspired emerging studies on

automated build fixing techniques. Macho et al. [19] designed three
fixing strategies for only dependency-related Maven build failures.

Zhang et al. [32] studied compiler failures in CI and summarized

fix patterns particularly for frequent compiler errors. Different

from these studies on the specific type of build failures, our work

investigates fix patterns across general types of build failures.

Al-Kofahi et al. [6] proposed a fault localization approach for

Makefile by calculating statement suspiciousness based on their

dynamic execution trace. Vassallo et al. [28] proposed a supporting

tool, summarizing Maven build logs and providing relevant online

links to reduce developers’ resolution efforts. Hassan andWang [14]

fixed general build failures via analysis on build history data. Re-

cently, Lou et al. [18] proposed a history-oblivious fixing technique
for general build failures via code analysis and search-based patch

generation. Although promising, the effectiveness of the state-of-

the-art fixing techniques is still far from satisfactory (i.e., the latest

technique successfully fixed only 18% build failures [18]), indicating

a gap between automated techniques and practical build failure

resolution. To bridge such a gap, in this work, we manually inspect

a large number of practical human fixing cases and summarize fix

patterns for general-type build failures.

9 CONCLUSION
In this work, we present a comprehensive study of build-issue reso-

lution by manually inspecting 1,080 build issues from Stack Over-

flow. We distill frequent topics in developers’ how-to questions and

find that most (80.84%) of them are about script code programming.

Through the study, we also construct a fine-granularity taxonomy

of 50 failure symptom categories and summarize fix patterns for

different failure types. We find that build issues stretch over a wide

spectrum of symptoms; and prevalent fix patterns and frequent

combinations of failure symptoms and fix patterns can be adopted

to facilitate build failure resolution. Furthermore, we discuss the

challenges in both simplistic and non-intuitive fix patterns.

ACKNOWLEDGEMENTS
This workwas partially supported by the National Key Research and

Development Program of China under Grant No. 2017YFB1001803

and the National Natural Science Foundation of China under Grant

Nos. 61872008 and 61861130363.

REFERENCES
[1] [n.d.]. “How do I execute a program using Maven?”. https://stackoverflow.

com/questions/2472376/how-do-i-execute-a-program-using-maven Accessed

Jan-2020.

[2] [n.d.]. “Stack Exchange Data Dump”. https://archive.org/details/stackexchange

Accessed Dec-2019.

[3] [n.d.]. ’Supplementary material’. https://sites.google.com/view/buildissue2020/.

[4] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software docu-

mentation issues unveiled. In Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 1199–1210.

https://doi.org/10.1109/ICSE.2019.00122

[5] Syed Ahmed and Mehdi Bagherzadeh. 2018. What do concurrency devel-

opers ask about?: a large-scale study using stack overflow. In Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM 2018, Oulu, Finland, October 11-12, 2018, Markku

Oivo, Daniel Méndez Fernández, and Audris Mockus (Eds.). ACM, 30:1–30:10.

https://doi.org/10.1145/3239235.3239524

[6] Jafar M. Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. 2014. Fault local-

ization for build code errors in makefiles. In 36th International Conference on
Software Engineering, ICSE ’14, Companion Proceedings, Hyderabad, India, May 31
- June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.).

ACM, 600–601. https://doi.org/10.1145/2591062.2591135

[7] Moayad Alshangiti, Hitesh Sapkota, Pradeep K. Murukannaiah, Xumin Liu, and

Qi Yu. 2019. Why is Developing Machine Learning Applications Challenging? A

Study on Stack Overflow Posts. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2019, Porto de Galinhas,
Recife, Brazil, September 19-20, 2019. IEEE, 1–11. https://doi.org/10.1109/ESEM.

2019.8870187

627

https://stackoverflow.com/questions/2472376/how-do-i-execute-a-program-using-maven
https://stackoverflow.com/questions/2472376/how-do-i-execute-a-program-using-maven
https://archive.org/details/stackexchange
https://sites.google.com/view/buildissue2020/
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1145/3239235.3239524
https://doi.org/10.1145/2591062.2591135
https://doi.org/10.1109/ESEM.2019.8870187
https://doi.org/10.1109/ESEM.2019.8870187

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang

[8] Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going big: a large-scale

study on what big data developers ask. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.).

ACM, 432–442. https://doi.org/10.1145/3338906.3338939

[9] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke

the build: an explorative analysis of Travis CI with GitHub. In Proceedings of the
14th International Conference on Mining Software Repositories, MSR 2017, Buenos
Aires, Argentina, May 20-28, 2017, Jesús M. González-Barahona, Abram Hindle,

and Lin Tan (Eds.). IEEE Computer Society, 356–367. https://doi.org/10.1109/

MSR.2017.62

[10] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, HaoyuWang, Tao Xie, and Xuanzhe

Liu. 2020. A comprehensive study on challenges in deploying deep learning

based software. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2020.

[11] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural Atten-

tion. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.
The Association for Computer Linguistics. https://doi.org/10.18653/v1/p16-1004

[12] Taher Ahmed Ghaleb, Daniel Alencar da Costa, and Ying Zou. 2019. An empirical

study of the long duration of continuous integration builds. Empirical Software
Engineering 24, 4 (2019), 2102–2139. https://doi.org/10.1007/s10664-019-09695-9

[13] Foyzul Hassan, Shaikh Mostafa, Edmund S. L. Lam, and Xiaoyin Wang. 2017. Au-

tomatic Building of Java Projects in Software Repositories: A Study on Feasibility

and Challenges. In 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM 2017, Toronto, ON, Canada, November 9-10,
2017, Ayse Bener, Burak Turhan, and Stefan Biffl (Eds.). IEEE Computer Society,

38–47. https://doi.org/10.1109/ESEM.2017.11

[14] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: an automatic approach to

history-driven repair of build scripts. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman

(Eds.). ACM, 1078–1089. https://doi.org/10.1145/3180155.3180181

[15] Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin,

Anthony Tomasic, and Graham Neubig. 2018. Retrieval-Based Neural Code

Generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018, Ellen Riloff,

David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association for

Computational Linguistics, 925–930. https://doi.org/10.18653/v1/d18-1111

[16] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea

Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning systems.

In In Proceedings of the 41st International Conference on Software Engineering,
ICSE 2020.

[17] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why Do Automated

Builds Break? An Empirical Study. In 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September 29 - October
3, 2014. IEEE Computer Society, 41–50. https://doi.org/10.1109/ICSME.2014.26

[18] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-

driven build failure fixing: how far are we?. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019,
Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Møller (Eds.). ACM,

43–54. https://doi.org/10.1145/3293882.3330578

[19] Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatically

repairing dependency-related build breakage. In 25th International Conference on
Software Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy,
March 20-23, 2018, Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd

(Eds.). IEEE Computer Society, 106–117. https://doi.org/10.1109/SANER.2018.

8330201

[20] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. 2012. The evolution

of Java build systems. Empirical Software Engineering 17, 4-5 (2012), 578–608.

https://doi.org/10.1007/s10664-011-9169-5

[21] Paul Ralph. 2019. Toward Methodological Guidelines for Process Theories and

Taxonomies in Software Engineering. IEEE Trans. Software Eng. 45, 7 (2019),

712–735. https://doi.org/10.1109/TSE.2018.2796554

[22] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.

An empirical analysis of build failures in the continuous integration workflows

of Java-based open-source software. In Proceedings of the 14th International Con-
ference on Mining Software Repositories, MSR 2017, Buenos Aires, Argentina, May
20-28, 2017, Jesús M. González-Barahona, Abram Hindle, and Lin Tan (Eds.). IEEE

Computer Society, 345–355. https://doi.org/10.1109/MSR.2017.54

[23] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking

about? A large scale study using stack overflow. Empirical Software Engineering
21, 3 (2016), 1192–1223. https://doi.org/10.1007/s10664-015-9379-3

[24] Carolyn B. Seaman. 1999. Qualitative Methods in Empirical Studies of Software

Engineering. IEEE Trans. Software Eng. 25, 4 (1999), 557–572. https://doi.org/10.

1109/32.799955

[25] Hyunmin Seo, Caitlin Sadowski, Sebastian G. Elbaum, Edward Aftandilian, and

Robert W. Bowdidge. 2014. Programmers’ build errors: a case study (at google).

In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der

Hoek (Eds.). ACM, 724–734. https://doi.org/10.1145/2568225.2568255

[26] Matúš Sulír and Jaroslav Porubän. 2016. A quantitative study of Java software

buildability. In Proceedings of the 7th International Workshop on Evaluation and
Usability of Programming Languages and Tools. 17–25.

[27] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:

Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017). https://doi.org/10.1002/smr.1838

[28] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. 2018.

Un-break my build: assisting developers with build repair hints. In Proceedings of
the 26th Conference on Program Comprehension, ICPC 2018, Gothenburg, Sweden,
May 27-28, 2018, Foutse Khomh, Chanchal K. Roy, and Janet Siegmund (Eds.).

ACM, 41–51. https://doi.org/10.1145/3196321.3196350

[29] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp

Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.

A Tale of CI Build Failures: An Open Source and a Financial Organization Perspec-

tive. In 2017 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2017, Shanghai, China, September 17-22, 2017. IEEE Computer Society,

183–193. https://doi.org/10.1109/ICSME.2017.67

[30] Xinli Yang, David Lo, Xin Xia, Zhiyuan Wan, and Jian-Ling Sun. 2016. What

Security Questions Do Developers Ask? A Large-Scale Study of Stack Overflow

Posts. J. Comput. Sci. Technol. 31, 5 (2016), 910–924. https://doi.org/10.1007/

s11390-016-1672-0

[31] Luke S. Zettlemoyer and Michael Collins. 2007. Online Learning of Relaxed CCG

Grammars for Parsing to Logical Form. In EMNLP-CoNLL 2007, Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech
Republic, Jason Eisner (Ed.). ACL, 678–687. https://www.aclweb.org/anthology/

D07-1071/

[32] Chen Zhang, Bihuan Chen, Linlin Chen, Xin Peng, and Wenyun Zhao. 2019.

A large-scale empirical study of compiler errors in continuous integration. In

Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven

Apel, and Alessandra Russo (Eds.). ACM, 176–187. https://doi.org/10.1145/

3338906.3338917

[33] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An

Empirical Study of Common Challenges in Developing Deep Learning Applica-

tions. In 30th IEEE International Symposium on Software Reliability Engineering,
ISSRE 2019, Berlin, Germany, October 28-31, 2019, Katinka Wolter, Ina Schiefer-

decker, Barbara Gallina, Michel Cukier, Roberto Natella, Naghmeh Ivaki, and

Nuno Laranjeiro (Eds.). IEEE, 104–115. https://doi.org/10.1109/ISSRE.2019.00020

[34] Mahdis Zolfagharinia, Bram Adams, and Yann-Gaël Guéhéneuc. 2019. A study

of build inflation in 30 million CPAN builds on 13 Perl versions and 10 operating

systems. Empirical Software Engineering 24, 6 (2019), 3933–3971. https://doi.org/

10.1007/s10664-019-09709-6

628

https://doi.org/10.1145/3338906.3338939
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.1007/s10664-019-09695-9
https://doi.org/10.1109/ESEM.2017.11
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.18653/v1/d18-1111
https://doi.org/10.1109/ICSME.2014.26
https://doi.org/10.1145/3293882.3330578
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1007/s10664-011-9169-5
https://doi.org/10.1109/TSE.2018.2796554
https://doi.org/10.1109/MSR.2017.54
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/32.799955
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1002/smr.1838
https://doi.org/10.1145/3196321.3196350
https://doi.org/10.1109/ICSME.2017.67
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1007/s11390-016-1672-0
https://www.aclweb.org/anthology/D07-1071/
https://www.aclweb.org/anthology/D07-1071/
https://doi.org/10.1145/3338906.3338917
https://doi.org/10.1145/3338906.3338917
https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1007/s10664-019-09709-6
https://doi.org/10.1007/s10664-019-09709-6

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Collection
	3.2 Manual Labelling

	4 How-to Topics in Build Issues (RQ1)
	5 Symptoms of Build Issues (RQ2)
	5.1 Taxonomy and Distribution
	5.2 Discussion

	6 Fix Patterns of Build ISSUES (RQ3)
	6.1 Prevalent Fix Patterns Across Symptoms
	6.2 Frequent Pairs of Fix Patterns and Symptoms
	6.3 Case-by-case Fix Patterns for Symptoms
	6.4 Challenges in Simplistic Fix Patterns
	6.5 Challenges in Non-intuitive Fix Patterns

	7 Threats to Validity
	8 Related Work
	8.1 Build Failures
	8.2 Build Fixing

	9 Conclusion
	References

