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ABSTRACT

Resource leaks, which are caused by acquired resources not being re-
leased, often result in performance degradation and system crashes.
Resource leak detection relies on two essential components: identi-
fying potential Resource Acquisition and Release (RAR) API pairs,
and subsequently analyze code to uncover instances where the cor-
responding release API call is absent after an acquisition API call.
Yet, existing techniques confine themselves to an incomplete pair
pool, either pre-defined manually or mined from project-specific
code corpus, thus limiting coverage across libraries/APIs and po-
tentially overlooking latent resource leaks.

In this work, we propose to represent resource-operation knowl-
edge as abstract resource acquisition/release operation pairs

(Abs-RAR pairs for short), and present a novel approach called
MiROK to mine such Abs-RAR pairs to construct a better RAR pair
pool. Given a large code corpus, MiROK first mines Abs-RAR pairs
with rule-based pair expansion and learning-based pair identifi-
cation strategies, and then instantiates these Abs-RAR pairs into
concrete RAR pairs. We implement MiROK and apply it to mine
RAR pairs from a large code corpus of 1,454,224 Java methods and
20,000 Maven libraries. We then perform an extensive evaluation
to investigate the mining effectiveness of MiROK and the practical
usage of its mined RAR pairs for supporting resource leak detec-
tion. Our results show thatMiROKmines 1,313 new Abs-RAR pairs
and instantiates them into 6,314 RAR pairs with a high precision
(i.e., 93.3%). In addition, by feeding our mined RAR pairs, existing
approaches detect more resource leak defects in both online code
examples and open-source projects.

CCS CONCEPTS

• Software and its engineering→ Software libraries and reposito-

ries.
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1 INTRODUCTION

Resource leaks, which are caused by acquired resources not being
released (e.g., unclosed file handle), is a serious software defect
that may cause runtime exceptions or program crashes. Resource
leaks are prevalent in both software projects [13] and online code
examples (e.g., even those code snippets accepted as correct answers
in Stack Overflow posts [54]).

To date, researchers have proposed various automated resource
leak detection techniques, which mainly rely on two essential com-
ponents. First, identify the potential pairs of the Resource Acqui-
sition API method and the corresponding Resource Release API
method (RAR pairs for short); Then based on the RAR pairs, analyze
the code to check whether the release API is not subsequently called
after the acquisition API. For example, the resource acquisition API
method LockManager.acquireLock() and the resource release API
method LockManager.releaseLock() are one RAR pair of the lock re-
source; and a resource leak occurs when LockManager.releaseLock()

is not called subsequently after LockManager.acquireLock().
Although achieving promising effectiveness, the majority of

existing resource leak detection techniques are concentrated on
proposing more precise and more scalable code analysis approaches
[21, 44, 49], while few of them focus on building a more complete

RAR pair pool. However, knowing the RAR pair is the prerequisite
of detecting the corresponding resource leak in the code, and an
incomplete RAR pair pool would limit the effectiveness of the fol-
lowing code analysis. In particular, most existing techniques [44, 49]
rely on human expertise and heuristic rules to predefine RAR pairs.
Such predefined RAR pairs not only require non-trivial human
efforts but also have limited coverage in libraries and APIs. For
example, FindBugs [2] only considers the predefined stream re-
lated RAR pairs and thus could only detect stream related resource
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< Lock.acquire(), Lock.release() >
< NoopLock.acquireLock(), NoopLock.releaseLock() >

< GlobalLock.acquire(), GlobalLock.release() >
…

< HLockManager.acquire, HLockManager.release >
< LockManager.acquireLock(), LockManager.releaseLock() >

…

Corresponding 
RAR Pairs in 

Different Libraries

Abs-RAR Pair for 
lock resource

〈lock, acquire / release〉

Figure 1: Abs-RAR Pair and RAR Pairs for Resource lock

leaks. More recently, Bian et al. [8] propose to identify RAR pairs
for a given project by mining and classifying frequent API pairs
within the project code corpus. However, such project-specific fre-
quent mining is limited to specific libraries/projects and could only
find RAR pairs that are frequently used in the project code corpus,
missing those infrequent RAR pairs.

Thus, in this work, we aim at building a large RAR pair pool
from a mass of projects and libraries, which could be used to en-
hance and support resource leak detection. In fact, it is challenging
to build such a relatively complete RAR pair pool that precisely
includes as many RAR pairs as possible. First, given the large va-
riety of libraries and APIs in the wild, it is not easy to cover the
diverse resources and acquisition/release operations. For example,
just for the lock resource, there are over 738 relevant RAR pairs
(reported by our approach), e.g., <LockManager.acquireLock(), Lock-
Manager.releaseLock()> and <SoftLock.lock(), SoftLock.unlock()>. In
addition to popular resources, there are many less common re-
sources (e.g., “semaphore”). Second, it is not easy to precisely iden-
tify whether two APIs belong to one RAR pair, since a pair of
antisense verbs do not always indicate the acquisition and release
operations. For example, although “open” and “close” are a pair of
antisense verbs that are commonly used in acquisition and release
APIs for some resources (e.g., <Database.open(), Database.close()>
and <Connection.open(), Connection.close()>), they do not denote
resource acquisition and release in some context (e.g., “openTag()”
and “closeTag()” actually denote the start tag and end tag of an XML
element).

To this end, we propose to represent resource-operation knowl-
edge as abstract resource acquisition/release operation pairs

(i.e., Abs-RAR pairs for short), and mine such Abs-RAR pairs from a
large code corpus. Different from RAR pairs that are represented by
concrete API methods, an Abs-RAR pair uses conceptual-level noun
and verbs to describe the resource object and acquisition/release
operations, which thus is able to represent a group of RAR pairs
that share similar semantics. For example, as shown in Figure 1, the
Abs-RAR pair ⟨lock, acquire / release⟩ could represent a set of RAR
pairs that use “acquire” and “release” to manage the “lock” resource,
such as <GlobalLock.acquire(), GlobalLock.release()> in library xml-

beans and <LockManager.acquireLock(), LockManager.releaseLock()>
in library copper-coreengine (highlighted in Figure 1). Our insight
is that abstract representation could extract more general resource-
operation knowledge from a large code corpus and cover more
diverse RAR pairs across different libraries/projects.

Based on this idea, we propose MiROK, a novel approach for
Mining Resource Operation Knowledge, which constructs a large
RAR pair pool to support resource leak detection. Given a large code
corpus, MiROK first mines resource operation knowledge in the

form of Abs-RAR pairs and then instantiates these Abs-RAR pairs
into concrete RAR pairs. In particular,MiROK iteratively mines new
Abs-RAR pairs based on existing ones with two strategies, i.e., the
rule-based Abs-RAR pair expansion strategy derives new Abs-RAR
pairs from existing ones based on the conceptual specialization
relationships between resources, and the learning-based Abs-RAR
pair identification strategy trains a sequence labeling model to
identify new Abs-RAR pairs. After the Abs-RAR pairs are mined,
MiROK then instantiates them into concrete RAR pairs in different
libraries with matching-based rules.

We implement MiROK and apply it to mine resource operation
knowledge from a large code corpus of 1,454,224 Java methods and
20,000 Maven libraries. We then perform an extensive evaluation
to investigate the mining effectiveness of MiROK and the usage of
its mined RAR pairs for supporting resource leak detection. First,
we investigate its mining effectiveness by checking the quality
of its mined Abs-RAR pairs and the instantiated RAR pairs. In
total, MiROK mines 1,313 new Abs-RAR pairs based on 26 seed
pairs and 89.2% (1,171) of them are manually checked as correct;
and all Abs-RAR pairs are then instantiated into 6,314 RAR pairs
from 2,261 libraries and 93.3% of them are manually checked as
correct. Second, we feed our mined RAR pairs to existing resource
leak detection analysis approaches and study how they could boost
resource leak detection. Given the prevalence of resource leak issues
in both online code examples and open-source projects, we evaluate
how our generated RAR pairs help resource leak detection in both
scenarios. First, for the online code examples, we find that with our
newly-mined RAR pairs as inputs, even a simplistic static analysis
approach successfully detects 4.5× more resource leaks (i.e., 761
resource leaks in total) from 46,389 online code exampleswith a high
precision (73.4%). Second, for the open-source projects, we enhance
the widely-used resource leak static detection tool Findbugs by
enriching its initial RAR pool with our new RAR pairs. Our results
show that on 10 Github projects, the original Findbugs detects 4
resource leaks while the Findbugs extended with our RAR pairs
detects 3 more previously-unknown resource leaks. Among them
one has been confirmed by developers as of the submission time.
In summary, the results show both the high quality and practical
usage of our mined RAR pairs.

In summary, this paper makes the following contributions:

• A novel representation that represents resource operation
knowledge with Abs-RAR pairs. Such Abs-RAR pairs could rep-
resent a group of semantically-similar RAR pairs across differ-
ent libraries/projects, and thus convey more general resource-
operation knowledge of a large code corpus.

• A novel mining approach MiROK that constructs a large
RAR pair pool to support resource leak detection. MiROK first
learns to mine Abs-RAR pairs from a large code corpus in an
iterative learning process and then instantiates these Abs-RAR
pairs into concrete RAR pairs.

• A large-scale and high-quality RAR pair pool that contains
6,314 RAR pairs mined from 1,454,224 Java methods over 2,261
libraries. To the best of our knowledge, this is the largest RAR
pair pool for Java resource leak detection. We would publicly
release our RAR pairs, which could be incorporated by existing
or future resource leak detection work.
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• An extensive evaluation that investigates both the mining
effectiveness and the practical usage ofmined RAR pairs for sup-
porting resource leak detection. The results show that MiROK
successfully mines and instantiates a large number of RAR
pairs with a high precision, and our mined RAR pairs further
help existing resource leak detection approaches to find more
resource leaks in both online code snippets and open-source
projects.

2 RELATEDWORK

Since our work mines resource acquisition and release API pairs
to support resource leak detection, in this section, we discuss the
related work on resource leak detection (Section 2.1) and API usage
pattern mining (Section 2.2).

2.1 Resource Leak Detection

Automated resource leak detection techniques [11, 16, 21, 22, 25–
27, 29, 30, 32, 39, 40, 42–44, 49, 50] have been proposed to detect
whether some resource is not being released after its acquisition.
Typically there are two important components for resource leak
detection. First, identify the potential RAR pairs (the pair of the
resource acquisition API method and the corresponding resource
release API method); (2) then based on the RAR pairs, analyze the
code to check whether the release API is not subsequently called
after the acquisition API.

The majority of existing resource leak detection techniques are
concentrated on the analysis part by proposing more precise and
more scalable code analysis approaches [11, 21, 27, 40, 44, 49]. For
example, Torlak et al. [44] combine intra-procedural analysis and
inter-procedural analysis to enable more scalable and more ac-
curate detection for system resource leaks (e.g., I/O stream and
database connections); Wu et al. [49] propose an inter-procedural
and callback-aware static analysis approach to detect resource leak
in Android apps; Kellogg et al. [21] incorporate ownership trans-
fer analysis, resource alias analysis, and obligation fresh to enable
more precise analysis. Our work is orthometric to this line of work,
since we focus on building a more diverse and large RAR pair pool
and our generated RAR pairs could further be incorporated into
existing resource leak detection techniques.

In fact, the RAR pairs used in most existing techniques [44, 49]
are often predefined by human expertise and heuristic rules, which
not only require non-trivial human efforts but also have limited cov-
erage in libraries and APIs. For example, Torlak et al. [44] manually
collect RAR pairs that are related to stream and database resources
in JDK. In addition, FindBugs [2] only considers the predefined
stream related RAR pairs and thus could only detect stream related
resource leaks. More recently, Bian et al. [8] propose SinkFinder,
which mines RAR pairs for a given project by mining and classi-
fying frequent API pairs within the project code corpus. However,
its mined RAR pairs are limited to specific libraries/projects and
only include RAR pairs that are frequently used in the project
code corpus, thus missing those infrequent RAR pairs. Different
from SinkFinder, our work represents andmines resource-operation
knowledge via a novel abstract representation (e.g., Abs-RAR pairs),
based on which we build a large RAR pair pool from a large amount
of diverse libraries/projects.

Call 
Sequence 
Extraction

Abs-RAR Pairs
(Initialized with seed pairs)

Rule-based Abs-RAR 
Pair Expansion

Learning-based Abs-RAR 
Pair Identification

Large
Code

Corpus

1. Preprocessing 2. Abs-RAR Pair Mining

Resource-Operation 
Knowledge Base

3. RAR Pair Instantiation

Libraries
Concrete

RAR
Pairs

Figure 2: Approach Overview of MiROK

2.2 Mining API Usage Pattern for Misuse

Detection

In other domains, there are also some techniques that mine API
usage patterns to detect the relevant API misuse [7, 8, 10, 28, 36–
38, 48, 53–55]. For example, Chang et al. [10] leverage frequent
subgraph and itemset mining to mine rules for neglected condition
detection. ExampleCheck [54] mines 180 API usage patterns for
100 popular Java APIs to detect API misuses such as missing con-
trol constructs and incorrect guard conditions. Our work targets a
domain (i.e., resource leak) different from these techniques, i.e., we
focus on mining the usage patterns of APIs on resource-operation
knowledge. To this end, we not only propose a novel representation
(i.e., Abs-RAR pairs) to represent the resource-knowledge-related
API usage pairs, but also propose a novel learning-based mining
approach to mine such Abs-RAR pairs from a large code corpus.

3 APPROACH

MiROK mines Abs-RAR pairs from a large code corpus and then
instantiates the Abs-RAR pairs into concrete RAR pairs of different
libraries. Figure 2 shows an overview of MiROK, which mainly
consists of three phases: call sequence extraction, Abs-RAR pair
mining, and RAR pair instantiation. (1) First, MiROK parses the
large code corpus to extract method call sequences (Section 3.1).
(2) Second, MiROK iteratively mines Abs-RAR pairs from the ex-
tracted sequences with two strategies (Section 3.2), i.e., rule-based
Abs-RAR pair expansion and learning-based Abs-RAR pair identi-
fication. (3) Lastly,MiROK instantiates the mined Abs-RAR pairs
into concrete RAR pairs (Section 3.3). In this work, we focus on
resource-operation knowledge in Java.

3.1 Method Call Sequence Extraction

Since resource acquisition and releasing are often achieved by in-
voking relevant API methods,MiROK first parses the given code
corpus to extract method call sequences as the input of the Abs-RAR
pair mining.

For each source file in the code corpus, MiROK first parses it
into an abstract syntax tree (AST) with the javalang toolkit [3], and
then extracts a sequence of method calls based on AST node types
following previous works [14, 15].

An extracted method call sequence 𝑆 is a list of method calls
ordered by their appearance in the code. For each method call 𝑜.𝑚,
o andm denote the name of the object and the called method respec-
tively. For example, for the method verify() shown in Figure 3(a),
MiROK extracts a method call sequence shown in Figure 3(b).

3.2 Abs-RAR Pair Mining

Abs-RAR Pair Definition. An Abs-RAR pair is a two-tuple 𝑃𝑎𝑏𝑠=
⟨𝑟𝑒𝑠 , 𝑎𝑐𝑞 / 𝑟𝑒𝑙⟩, where 𝑟𝑒𝑠 refers to a resource concept, and 𝑎𝑐𝑞 and
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(a) Code Example

wakeLock.acquire RecoverySystem.verifyPackage wakeLock.releaseCall Sequence:

(b) Method Call Sequence

wake

OBJ

Tres

lock

OBJ

Tres

acquire

MD

Tacq

system

OBJ

Tnon

verify

MD

Tnon

wake

OBJ

Tres

lock

MD

Tres

Token Sequence:

Part Sequence:

Tag Sequence:

recovery

OBJ

Tnon

package

MD

Tnon

release

MD

Trel

(c) Token Sequence, Part Sequence, and Tag Sequence

Figure 3: A Code Example and its Corresponding Call Se-

quence, Token Sequence, Part Sequence, and Tag Sequence

𝑟𝑒𝑙 is a pair of conceptual-level resource acquisition and release
operations for 𝑟𝑒𝑠 . The benefits of conceptual-level abstraction in
Abs-RAR are two-folds. First, an Abs-RAR pair can be regarded
as an abstraction of similar RAR pairs that are implemented in
different libraries. For example, ⟨lock, acquire / release⟩ is an Abs-
RAR pair for lock resource, as shown in Figure 1, it could represent
a group of relevant RAR pairs defined in different libraries. Sec-
ond, representing the resources and acquisition/release operations
in a conceptual way could further support resource generaliza-
tion/specialization (e.g., “wake lock” is a specialization of “lock”),
synonyms (e.g., “database” and “db” are synonyms), and seman-
tic relevance (e.g., “lock” and “semaphore” are both concurrency-
related resources, “acquire”/“release” and “lock”/“unlock” are both
concurrency-related acquisition/release operations). These proper-
ties can help the transfer and generalization of resource-operation
knowledge, thus are beneficial for the mining.

With a small set of seed Abs-RAR pairs,MiROK iteratively mines
Abs-RAR pairs from the extracted method call sequences via two
strategies (i.e., rule-based Abs-RAR pair expansion and learning-
based Abs-RAR pair identification). Rule-based Abs-RAR pair ex-
pansion derives new Abs-RAR pairs from existing ones based on
the conceptual specialization relationships between resources; and
learning-based Abs-RAR pair identification trains a sequence la-
beling model based on existing Abs-RAR pairs and uses the model
to identify new Abs-RAR pairs from the method call sequences. In
each iteration,MiROK leverages both strategies to extract new Abs-
RAR pairs, which are then included to extend the pool of Abs-RAR
pairs. The iteration process repeats until the maximum number of
iterations is reached or no new Abs-RAR pairs are found. We then
detail each mining strategy respectively.

3.2.1 Rule-based Abs-RAR Pair Expansion. Rule-based Abs-RAR
pair expansion derives new Abs-RAR pairs from existing ones based
on the specialization relationships between resources. In particu-
lar, a conceptual specialization relationship means that a resource
concept is a special instantiation of another resource concept. For
example, we regard the resource concept “wake lock” as a special-
ization of the resource concept “lock”, and it is very likely that the

specialized resource concept “wake lock” shares the similar acqui-
sition/release operations as “lock” (e.g., “acquire” and “release”).

In particular, given a method call sequence 𝑆 , MiROK first iden-
tify all the candidate method call pairs, which match any existing
Abs-RAR pair as a conceptual specialization; then MiROK derives
newAbs-RAR pairs based on the candidate pairs. We then introduce
the detailed steps as follows.

First, MiROK tokenizes each method call 𝑜.𝑚 in the method call
sequence 𝑆 based on camel case [14, 15, 31] and parse part-of-speech
(POS) tags [17, 46, 47]. In this way, each method call 𝑜.𝑚 is tok-
enized into the form [O VB NP REST ], where O denotes the object
name, and VB, NP, and REST denote the verb, noun phrase, and the
rest tokens in𝑚, respectively. For example, the method call File-
sController.openFileByName is transformed into [O(“file controllers”)
VB(“open”) NP(“file”) REST(“by name”)].

Second, for each two methods calls (i.e., 𝑜.𝑚1 and 𝑜.𝑚2) in 𝑆 ,
MiROK identifies whether they are a pair of resource acquisition/re-
lease operations (based on our pairing rules) and whether they
match any existing Abs-RAR pair ⟨𝑟𝑒𝑠 , 𝑎𝑐𝑞 / 𝑟𝑒𝑙⟩ as a conceptual
specialization (based on our matching rules). The qualified method
call pairs are considered as candidate pairs.
• Matching Rules.We consider a method call 𝑜.𝑚 with the form
[O VB NP REST ] matches 𝑟𝑒𝑠.𝑎𝑐𝑞 (or 𝑟𝑒𝑠.𝑟𝑒𝑙) if it satisfies the
following two conditions: (1) the noun phrase NP contains 𝑟𝑒𝑠 ,
or O contains 𝑟𝑒𝑠 and NP is empty; (2) the verb VB equals 𝑎𝑐𝑞
(or 𝑟𝑒𝑙 ).

• Pairing Rules.We consider two method calls 𝑜.𝑚1 and 𝑜.𝑚2
as a pair of acquisition/release operations , if they satisfy the
following three conditions: (1) 𝑜.𝑚1 and 𝑜.𝑚2 match 𝑟𝑒𝑠.𝑎𝑐𝑞

and 𝑟𝑒𝑠.𝑟𝑒𝑙 respectively; (2) the noun phrase (i.e., NP) and the
rest (i.e., REST ) in 𝑜.𝑚1 and 𝑜.𝑚2 are the same; and (3) 𝑜.𝑚1
appears before 𝑜.𝑚2 in the same method call sequence.

Third, based on each candidate pair <𝑜.𝑚1, 𝑜.𝑚2>,MiROK cre-
ates a new Abs-RAR pair ⟨𝑟𝑒𝑠′, 𝑎𝑐𝑞 / 𝑟𝑒𝑙⟩, where 𝑟𝑒𝑠′ is 𝑜 if 𝑜 con-
tains 𝑟𝑒𝑠 and NP otherwise. For example, given an Abs-RAR pair
⟨lock, acquire / release⟩, we can derive a candidate Abs-RAR pair
⟨wake lock, acquire / release⟩ from the method call sequence shown
in Figure 3(b). To avoid generating an overwhelming number of
Abs-RAR pairs in each iteration, we only include those ones whose
frequency is more than three into the Abs-RAR pair pool.

3.2.2 Learning-based Abs-RAR Pair Identification. Rule-based pair
expansion only mines new pairs which have conceptual specializa-
tion relationships of existing pairs. Hence, to include more diverse
Abs-RAR pairs, MiROK further leverages a learning-based Abs-
RAR pair identification strategy. In particular, MiROK treats the
Abs-RAR pair identification problem as a sequence labeling prob-
lem [20], leverages existing Abs-RAR pairs to automatically label
the data for model training, and then utilizes the trained model to
extract new Abs-RAR pairs. We then discuss details on the problem
definition, automatic data labeling, model design, and training/pre-
diction procedure, respectively.
Problem Definition. We model Abs-RAR pair identification as
a sequence labeling problem. Sequence labeling has been widely
studied in natural language processing (NLP) [20] and applied to
software engineering tasks, e.g., entity/concept recognition [45, 51,
52], and its main goal is to tag each token in a token sequence.
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In our context, we define four different tags, i.e., 𝑇𝑟𝑒𝑠 , 𝑇𝑎𝑐𝑞 , 𝑇𝑟𝑒𝑙 ,
and 𝑇𝑛𝑜𝑛 (denoting tokens corresponding to resource, acquisition
operation, release operation, and others, respectively). With each
method call sequence as a token sequence, our goal is to assign a tag
to each token; and based on the combination of these tagged tokens,
we could further identify possible combinations of a resource 𝑟𝑒𝑠 ,
an acquisition operation 𝑎𝑐𝑞, and a release operation 𝑟𝑒𝑙 that can
form an Abs-RAR pair like ⟨𝑟𝑒𝑠 , 𝑎𝑐𝑞 / 𝑟𝑒𝑙⟩. For example, the token
sequence and the tag sequence of the method call sequence in
Figure 3(b) are shown in Figure 3(c).
Automatic Data Labeling. To prepare the training data for the se-
quence labeling model,MiROK automatically labels the method call
sequences via a distant supervision method. Distant supervision
was originally proposed for the data labeling problem in relation
extraction [35]. The main idea is to use the existing knowledge
base to automatically label training data. In our work, we use ex-
isting Abs-RAR pairs as the resource-operation knowledge base to
automatically label method call sequences. For each method call
sequence 𝑆 , if it matches an existing Abs-RAR pair, it is automat-
ically labeled and used a training sample; otherwise, it is used as
a prediction sample for identifying new Abs-RAR pairs. We then
explain the details as follows.

• Token/Part Sequence Generation.MiROK generates a token se-
quence and a part sequence for the method call sequence 𝑆 .
These two sequences will be used as the input of the sequence
labeling model. For each method call 𝑜.𝑚 in 𝑆 , MiROK tok-
enizes 𝑜 and𝑚 by camel case to get a subsequence of tokens.
For example, the method call “wakeLock.acquire” is tokenized
into a subsequence [“wake”, “lock”, “acquire”]. Then MiROK
generates a token sequence for 𝑆 by concatenating the token
subsequences of all the method calls in 𝑆 . To record the part
of method call (object or method) to which a token belongs,
MiROK generates a corresponding part sequence for the token
sequence. For each token, the part sequence uses OBJ or MD

to indicate that the token is from the object part or the method
part of the method call. For example, for the above token sub-
sequence [“wake”, “lock”, “acquire”], its corresponding part
subsequence is [OBJ, OBJ, MD].

• Matching Sequences with Abs-RAR Pairs.MiROK then checks
whether 𝑆 could match any existing Abs-RAR pair. For each
Abs-RAR pair,MiROK checks whether any pair of method calls
in 𝑆 matches the Abs-RAR pair based on the pairing rules in
Section 3.2.1. If such a pair of method calls is found, the method
call sequence 𝑆 matches the Abs-RAR pair. If 𝑆 matches two
Abs-RAR pairs and one of them is derived from the other, we
only keep the derived one, i.e., the specialized one. For example,
the method call sequence shown in Figure 3(b) matches both
⟨lock, acquire / release⟩ and ⟨wake lock, acquire / release⟩ and
we only keep the latter.

• Tag Sequence Generation. If 𝑆 matches an existing Abs-RAR pair
⟨𝑟𝑒𝑠 , 𝑎𝑐𝑞 / 𝑟𝑒𝑙⟩,MiROK then generates a tag sequence for it. As-
suming the corresponding method call pair in 𝑆 is <𝑜.𝑚1, 𝑜.𝑚2>,
MiROK transforms𝑜.𝑚1 and𝑜.𝑚2 into the form [OVBNP REST ]
and generates a tag for each token in the token sequence of
𝑆 in the following way: the verbs (i.e., VB) in𝑚1 and𝑚2 are
tagged with 𝑇𝑎𝑐𝑞 and 𝑇𝑟𝑒𝑙 respectively; the tokens in 𝑜 or the
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Figure 4: Sequence Labeling Model inMiROK

noun phrase (i.e., NP) in𝑚1 and𝑚2 that contain 𝑟𝑒𝑠 are tagged
with 𝑇𝑟𝑒𝑠 ; all the other tokens are tagged with 𝑇𝑛𝑜𝑛 . For exam-
ple, for the method call sequence shown in Figure 3(b) MiROK
generates a tag sequence as shown in Figure 3(c).

In this way, if a tag sequence could be generated for 𝑆 ,MiROK
treats it as a training sample and uses its token sequence, part
sequence, and tag sequence for training; otherwise,MiROK treats it
as a prediction sample and conducts sequence labeling on its token
sequence and part sequence to identify new Abs-RAR pairs.
Model Architecture. The sequence labeling model in MiROK
needs to meet the following two requirements. First, the model
should be able to produce multiple tag sequences for a method
call sequence, as there might be multiple Abs-RAR pairs. Thus, we
leverage the iterative grid labeling in OpenIE6 [24], which could
support iteratively producing multiple tag sequences for a method
call sequence. Second, the model should be able to incorporate
both the textual semantics of tokens and the sequential information
of method calls in the learning. Thus, we integrate LSTM (Long
Short-Term Memory) [18] in the model, which is commonly used
for capturing token semantics and sequential contexts.

Figure 4 shows the detailed architecture of our sequence labeling
model, which takes a token sequence [𝑡𝑜𝑘𝑒𝑛1, 𝑡𝑜𝑘𝑒𝑛2, ..., 𝑡𝑜𝑘𝑒𝑛𝑁 ]
and a part sequence [𝑝𝑎𝑟𝑡1, 𝑝𝑎𝑟𝑡2, ..., 𝑝𝑎𝑟𝑡𝑁 ] as input and outputs a
fixed number (D) of tag sequences. Here,D indicates the depth of the
model. Note that some or even all of the D produced tag sequences
may include only the tag 𝑇𝑛𝑜𝑛 , indicating that no Abs-RAR pairs
are involved. Each token 𝑡𝑜𝑘𝑒𝑛𝑖 and its corresponding part 𝑝𝑎𝑟𝑡𝑖
are first projected into their vector representations 𝑒𝑚𝑏𝑡𝑜𝑘 (𝑡𝑜𝑘𝑒𝑛𝑖 )
and 𝑒𝑚𝑏𝑝𝑎𝑟𝑡 (𝑝𝑎𝑟𝑡𝑖 ) respectively through an embedding layer. Then
the two vectors are concatenated into an enriched token vector
®𝑒𝑖 = 𝑒𝑚𝑏𝑡𝑜𝑘 (𝑡𝑜𝑘𝑒𝑛𝑖 ) ⊕ 𝑒𝑚𝑏𝑝𝑎𝑟𝑡 (𝑝𝑎𝑟𝑡𝑖 ). After processing all the
tokens, their enriched vectors, i.e., [ ®𝑒1, ®𝑒2, ..., ®𝑒𝑁 ], are fed into a Bi-
LSTM layer to obtain the corresponding input vectors [ ®𝑖1, ®𝑖2, ..., ®𝑖𝑁 ]
for the iterative grid labeling block. The iterative grid labeling block
includes the following three layers:

• Bi-LSTM Layer. This layer takes the input vectors and outputs
hidden states [ ®ℎ1, ®ℎ2, ..., ®ℎ𝑁 ].

• Fully-Connected Tag Classification Layer. This layer predicts a
probability distribution 𝑝𝑖 of the four tags (i.e., 𝑇𝑟𝑒𝑠 , 𝑇𝑎𝑐𝑞 , 𝑇𝑟𝑒𝑙 ,
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𝑇𝑛𝑜𝑛) for each hidden state ®ℎ𝑖 . Based on 𝑝𝑖 , a tag sequence
[𝑡𝑎𝑔1, 𝑡𝑎𝑔2, ..., 𝑡𝑎𝑔𝑁 ] can be generated by selecting a tag 𝑡𝑎𝑔𝑖
that has the highest probability in 𝑝𝑖 .

• Tag Embedding Layer. This layer converts the tag sequence into
the corresponding vector sequence [ ®𝑡1, ®𝑡2, ..., ®𝑡𝑁 ], where ®𝑡𝑖 is
the vector representation of 𝑡𝑎𝑔𝑖 .

After each block iteration, current hidden states [ ®ℎ1, ®ℎ2, ..., ®ℎ𝑁 ]
and tag vectors [ ®𝑡1, ®𝑡2, ..., ®𝑡𝑁 ] are added to produce new input vec-
tors, i.e., [ ®ℎ1 + ®𝑡1, ®ℎ2 + ®𝑡2, ..., ®ℎ𝑁 + ®𝑡𝑁 ], for the next iteration of the
block. The iterative process continues until D tag sequences are
generated for the current token sequence.
Token Embeddings Pre-training. To alleviate the parameter
overfitting problem in training and the out-of-vocabulary problem
in prediction,MiROK leverages token embeddings pre-trained on
the entire code corpus to initialize the token embedding layer of
the model. The token embeddings are pre-trained on all the token
sequences extracted from the code corpus using Word2Vec [34].
The token embeddings can help capture the semantic associations
between tokens by making tokens that frequently appear in simi-
lar contexts as close as possible in the space. For example, “lock”,
“semaphore”, “acquire”, and “release” are close in the space and the
embeddings can help the sequence labeling model to capture the
associations among the resources (e.g., “lock”, “semaphore”) and
acquisition/release operations (e.g., “acquire”, “release”). After ini-
tialized by the pre-trained token embeddings, the parameters of the
token embedding layer are frozen during model training.
Model Training. According to the grid labeling architecture of
the model, each training sample, which represents a method call
sequence, needs to have exactly D (the depth of the model) tag
sequences. Therefore,MiROK randomly selects D tag sequences for
the training sample if it has no less than D tag sequences; otherwise,
MiROK generates some tag sequences that include only the tag
𝑇𝑛𝑜𝑛 for the training sample to reach the number D.

During training, the model parameters are continuously opti-
mized with the objective of minimizing the loss.MiROK defines the
loss function as the cross-entropy loss between the predicted tag
sequences and the labeled ones. For each training sample, the loss
is the sum of the loss in the D iterations of the grid labeling block.
In the 𝑖-th iteration, the model predicts a tag sequence 𝑝𝑟𝑒𝑑 with
a probability sequence 𝑝𝑟𝑜𝑏. Here, the 𝑗-th element in 𝑝𝑟𝑜𝑏 is the
predicted probability of the 𝑗-th tag in 𝑝𝑟𝑒𝑑 . Then MiROK takes
the corresponding tag sequence 𝑔𝑜𝑙𝑑 (i.e., the 𝑖-th tag sequence
of the training sample) and calculates the cross-entropy loss L𝐶𝐸

between 𝑝𝑟𝑒𝑑 and 𝑔𝑜𝑙𝑑 based on 𝑝𝑟𝑜𝑏.
However, the cross-entropy loss is not so sensitive to the dif-

ference between the acquisition operation (i.e., 𝑎𝑐𝑞) and release
operation (i.e., 𝑟𝑒𝑙 ), as they are close in the token embedding space
and have the same token part labels (i.e., MD). Therefore, we add a
penalty term to the cross-entropy loss to better reflect the difference
between the acquisition operation and the release operation of the
same Abs-RAR pair. Given a predicted tag sequence 𝑝𝑟𝑒𝑑 and the
corresponding tag sequence in the training sample 𝑔𝑜𝑙𝑑 , MiROK
obtains the hidden states of the two tokens in the training sample
corresponding to the 𝑎𝑐𝑞 and 𝑟𝑒𝑙 tags in 𝑔𝑜𝑙𝑑 . Based on the two
hidden states (i.e., ®ℎ𝑎𝑐𝑞 and ®ℎ𝑟𝑒𝑙 ) we use Equation 1 to calculate

their cosine similarity and use it as the penalty term.

P = cos( ®ℎ𝑎𝑐𝑞, ®ℎ𝑟𝑒𝑙 ) (1)

The final loss L is calculated as Equation 2, where L𝐶𝐸
𝑖

and P𝑖

are the cross-entropy loss and penalty term in the 𝑖-th block itera-
tion. Based on the loss function,MiROK trains the model using a
stochastic optimizer such as Adam [23].

L =

𝐷∑︁
𝑖=1

(L𝐶𝐸
𝑖 + P𝑖 ) (2)

Before training,MiROK splits the training samples into a training
set and a validation set by 9:1. The training set is used for model
training and the validation set is used to validate the performance
of the model. When the loss on the validation set (i.e., validation
loss) does not decrease in three consecutive epochs,MiROK stops
the training process and chooses the version of the model having
the lowest loss as the trained model.
Model Prediction and Abs-RAR Pair Extraction.MiROK use
the trained model to predict tag sequences for each prediction
sample and extracts new Abs-RAR pairs from the predicted tag
sequences. Given a prediction sample 𝑆 , MiROK takes its token
sequence and part sequence as input and uses the trained model
to predict D tag sequences for it. For each predicted tag sequence
𝑝𝑟𝑒𝑑 , MiROK tags the tokens in 𝑆 according to the correspond-
ing tags in 𝑝𝑟𝑒𝑑 . Then MiROK tries to extract an Abs-RAR pair
⟨𝑟𝑒𝑠 , 𝑎𝑐𝑞 / 𝑟𝑒𝑙⟩ where 𝑟𝑒𝑠 , 𝑎𝑐𝑞, and 𝑟𝑒𝑙 are continuous tokens in 𝑆

that respectively have the corresponding tags (i.e., 𝑇𝑟𝑒𝑠 , 𝑇𝑎𝑐𝑞 , 𝑇𝑟𝑒𝑙 ).
If such an Abs-RAR pair is extracted and 𝑎𝑐𝑞 and 𝑟𝑒𝑙 are not the
same, MiROK treats it as a candidate Abs-RAR pair and calculates
its confidence by averaging the probabilities of all the tags in 𝑝𝑟𝑒𝑑 .
After all the prediction samples are processed,MiROKmerges iden-
tical candidate Abs-RAR pairs and averages their confidences as
the final confidence. To ensure the quality of new Abs-RAR pairs,
we only include the candidate Abs-RAR pairs whose frequency is
more than three and confidence is higher than 0.8 to extend the
Abs-RAR pair pool.

3.3 RAR Pair Instantiation

The Abs-RAR pairs convey general resource-operation knowledge
summarized from a large code corpus, and they could further be
instantiated into concrete RAR pairs (i.e., the pair of API methods)
that are defined in different libraries. These concrete RAR pairs
could be further incorporated by existing resource leak detection
techniques. Different from existing work (e.g., SinkFinder) mining
RAR pairs from the project code that uses the APIs in RAR pairs, our
RAR pairs are instantiated from the library code that directly defines
the APIs in RAR pairs. Therefore, our approach could identify a
comprehensive pool of RAR pairs, including those pairs that are
infrequently or unpairwisely used in the project code.

In particular, for all API methods defined in a given library,
MiROK regards any two API methods 𝑐.𝑚1 and 𝑐.𝑚2 (defined in a
same class 𝑐) as an instantiation of the Abs-RAR pair ⟨𝑟𝑒𝑠 , 𝑎𝑐𝑞 / 𝑟𝑒𝑙⟩,
if 𝑐.𝑚1 and 𝑐.𝑚2 match 𝑟𝑒𝑠.𝑎𝑐𝑞 and 𝑟𝑒𝑠.𝑟𝑒𝑙 respectively. The match-
ing rules for method calls and resource operations are the same
as those in Section 3.2.1. For example, for the two API methods
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acquire() and release() which are both defined in same class Global-
Lock of the library xmlbeans, we consider them as an instantiated
RAR pair of the Abs-RAR pair ⟨lock, acquire / release⟩.

4 IMPLEMENTATION

The implementation of MiROK includes the following important
preparations and decisions.
Seed Abs-RAR Pair Collection. The seed Abs-RAR pairs used in
our implementation are extracted from the API method pairs for
resource acquisition and release used in Wu et al.’s work [49]. We
manually extract 26 seed Abs-RAR pairs from the signatures of the
API method pairs. For example, from the API method pair <Wifi-

Manager.Lock.acquire(), WifiManager.Lock.release()> we extract an
Abs-RAR pair ⟨lock, acquire / release⟩. The full list of the 26 seed
Abs-RAR pairs can be found in our replication package [6].
Dataset Construction. (1) The code corpus used for Abs-RAR
pair mining mainly consists of two sources. First, we obtain crawl
the open-source Java projects on GitHub that were created dur-
ing the period of 2010 to 2016 and have more than 50 stars. These
projects have about 4M methods. Second, we collect the data in
CodeSearchNet [19], which is a collection of datasets and bench-
marks for code retrieval. It contains about 500K Java methods. We
merge the two data sources and filter out duplicate methods. We
further filter out the methods that contain less than three method
calls, as they are unlikely to include RAR pairs. We also filter out the
methods that contain more than 50 method calls, since the training
of the sequence labeling model will consume a lot of computational
resources when processing too long call sequences. As a result, the
final code corpus contains 1,454,224 Java methods. (2) The libraries
used for RAR pair instantiation include top 20,000 Maven libraries
in the Libraries.io dataset [4] according to their stars on GitHub.
MaximumNumber of Iterations in Abs-RAR Pair Mining. We
set the maximum number of iterations to 20 based on our observa-
tion that the iterative mining process usually reaches convergence
in around 20 iterations (see Section 5.5).
ModelConstruction. The sequence labelingmodel is implemented
using PyTorch 1.9.1 [5], which is one of the most popular machine
learning frameworks. The hyper-parameters of the model are as
follows. The sizes of token embeddings and part embeddings in the
embedding layer are 100 and 30 respectively. The hidden sizes of
the two Bi-LSTM layers are both 64. The tag classification layer
consists of two layers of fully-collected networks whose hidden
size is 128. The settings of these hyper-parameters are based on
common practice in related work and the considerations of machine
configuration and training overhead. The depth of the model (i.e.,
D) is set to 2.
Model Training. We add a dropout of 0.5, a commonly used tech-
nique for regularization, between the second Bi-LSTM layer and
the tag classification layer. The learning rate is set to 0.001 and the
training batch size is set to 64. The maximum number of training
epochs is set to 100, which is rarely reached due to early stopping.

5 EVALUATION

We apply MiROK to first mine Abs-RAR pairs from a large code
corpus of 1,454,224 Java methods and then to instantiate the Abs-
RAR pairs into concrete RAR pairs for 20,000 Maven libraries. In

Table 1: Some Examples of the Mined Abs-RAR Pairs

Domain Abs-RAR Pairs

Concurrency ⟨mutex, lock / unlock⟩, ⟨semaphore, acquire / release⟩
Database ⟨database, connect / disconnect⟩, ⟨db, connect / disconnect⟩

File ⟨xml, open / close⟩, ⟨zip, <init> / close⟩
I/O ⟨stream, <init> / close⟩, ⟨reader, <init> / close⟩

Web/Network ⟨socket, connect / close⟩, ⟨client, create / destroy⟩
Device ⟨camera, start / stop⟩, ⟨device, open / close⟩
Service ⟨manager, activate / deactivate⟩, ⟨compactor, initialize / close⟩

this section, we first evaluate the mining effectiveness of MiROK by
investigating the quality of its mined Abs-RAR pairs (RQ1) and its
instantiated RAR pairs (RQ2); we then evaluate the practical usage
of its RAR pairs by investigating whether they could boost resource
leak detection in online code examples (RQ3.a) and open-source
projects (RQ3.b); we also perform an ablation study to investigate
the contribution of both mining strategies (RQ4).

• RQ1. (Effectiveness of Abs-RAR Pair Mining): How
many Abs-RAR pairs are mined by MiROK? How many
of them are valid?

• RQ2. (Effectiveness of RAR Pair Instantiation): How
many concrete RAR pairs are instantiated from the mined
Abs-RAR pairs? How many of them are valid?

• RQ3. (Practical Usage for Resource Leak Detection):

– RQ3.a (Resource Leaks in Online Code Examples):
Can our mined RAR pairs help detect resource leaks in
online code examples?

– RQ3.b (Resource Leaks in Open-source Projects):
Can our mined RAR pairs help detect resource leaks in
open-source project?

• RQ4. (Impact of Each Mining Strategy): What is the con-
tribution of the each mining strategy inMiROK?

5.1 RQ1: Abs-RAR Pair Mining

In this RQ, we analyze the Abs-RAR pairs mined byMiROK.

5.1.1 Protocol. We manually assess the quality of the Abs-RAR
pairs mined byMiROK. In particular, we invite two developers who
have more than four years Java development experience to inde-
pendently inspect the validity of all the mined Abs-RAR pairs. For
each Abs-RAR pair, they are asked to annotate whether it is valid,
i.e., representing a valid pair of acquisition/release operations on a
resource. To make a proper decision, they can search and consult
external sources for help, e.g., reading various technical documents
on Google or search GitHub projects using specific keywords to
find code snippets that include the Abs-RAR pair. If their annota-
tions for an Abs-RAR pair are inconsistent, a third annotator is
assigned to give an additional annotation to resolve the conflict
with a majority-win strategy. The Cohen’s Kappa agreement [33]
of the two annotators is 0.812 in our manual assessing, indicating a
substantial agreement.

5.1.2 Results. Based on the 26 seed Abs-RAR pairs, MiROK mines
1,313 new Abs-RAR pairs from the code corpus, among which 1,171
(89.2%) are confirmed to be valid. These new Abs-RAR pairs involve
982 resources (964 of them are not included in the seed pairs) and
43 operation pairs (30 of them are not included in the seed pairs).
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Table 1 shows some examples of the valid Abs-RAR pairs. The
involved resources scatter in different domains such as concurrency,
database, file, I/O, web/network, device, and service. These Abs-
RAR pairs reflect the following capabilities of MiROK in identifying
new Abs-RAR pairs based on existing ones.
1) Conceptual Specialization of Resources. New Abs-RAR pairs
perform the same acquisition/release operations on conceptually
specialized resources. For example, ⟨wake lock, acquire / release⟩
has the same acquisition/release operations with ⟨lock, acquire / re-
lease⟩ and “wake lock” is the conceptual specialization of “lock”.
This strategy is directly used by the rule-based Abs-RAR pair ex-
pansion (see Section 3.2.1).
2) Conceptually Relevant Resources. New Abs-RAR pairs per-
form the same acquisition/release operations on conceptually rele-
vant resources. For example, ⟨semaphore, acquire / release⟩ has the
same acquisition/release operations with ⟨lock, acquire / release⟩
and “semaphore” is a conceptually relevant concept of “lock”.
3) New Acquisition and Release Operations on Existing Re-

sources. New Abs-RAR pairs perform different acquisition/release
operations on existing resources. For example, ⟨manager, activate /
deactivate⟩ has the same resource with ⟨manager, open / close⟩ and
involves new acquisition/release operations “activate”/“deactivate”
instead of “open”/“close”.
4) New Combinations of Existing Resources and Operations.
New Abs-RAR pairs combine existing resources and acquisition/re-
lease operations in different ways. For example, ⟨database, con-
nect / disconnect⟩ combines the resource “database” and the ac-
quisition/release operations “connect”/“disconnect” which exist
in existing Abs-RAR pairs such as ⟨database, open / close⟩ and
⟨connection, connect / disconnect.⟩
5) Completely New Resources and Operations. New Abs-RAR
pairs involve completely new resources and acquisition/release op-
erations. For example, ⟨compactor, initialize / close⟩ and ⟨client, cre-
ate / destroy⟩ both involve unseen resources and acquisition/release
operations.

In summary, MiROK can mine a wide variety of Abs-RAR pairs
that involve new resources and/or acquisition/release operations.
The results reflect the capabilities of MiROK in learning the latent
relationships between resources and acquisition/release operations.

We also investigate the invalid Abs-RAR pairs mined byMiROK,
and find that most of them are caused by the invalid combinations
of resources and acquisition/release operations. The problem might
be caused by the accumulation of errors during the iterative learn-
ing process, sinceMiROK adopts a distant supervision method to
train the sequence labeling model. For example, if an invalid Abs-
RAR pair (e.g., ⟨stream, mark / reset⟩) is mined, it might lead to
more invalid Abs-RAR pairs with other I/O related resources (e.g.,
“buffer”) in subsequent iterations (e.g., ⟨buffer, mark / reset⟩). To
address this issue, future work could further introduce perturbation
to mitigate the negative affects in each iteration.

Summary: MiROK is highly effective in mining Abs-RAR
pairs by mining 1,313 new Abs-RAR pairs with 89.2% valid rate.
The mined Abs-RAR pairs cover a wide spectrum of unseen
resources and/or acquisition/release operations from different
domains.

5.2 RQ2: RAR Pair Instantiation

In this RQ, we analyze the concrete RAR pairs instantiated by
MiROK for 20,000 Maven libraries.

5.2.1 Protocol. We introduce the RAR pair mining baseline and
our manual assessment used in this RQ.
RAR pair mining baseline. In this RQ, we include the state-
of-the-art RAR pair mining technique SinkFinder as baseline by
applying both SinkFinder andMiROK on the 20,000 Maven libraries
to generate RAR pairs. SinkFinder first mines frequent API pairs
from the given code corpus, based on which it further trains API
embeddings to infer reliable API pairs and learns to classify RAR
pairs. For a fair comparison, we re-implement SinkFinder for Java
and apply it to the same code corpus asMiROK.

More specifically, we first mine frequent API pairs (associated
with the 20,000 Maven libraries) from the code corpus based on
the control flows and data dependencies, following the original
mining process of SinkFinder. This results in a total of 50,397
frequent API pairs are obtained as potential RAR pairs, such as
<org.slf4j.Logger.info, org.slf4j.Logger.error> (occuring 9,971 times).
Subsequently, we utilize random walks on control-flow graphs to
extract API sequences and apply Word2Vec [34] and fastText [9]
to train API embeddings, thereby aligning with the approach used
in SinkFinder. Building upon the embeddings, a set of seed pairs
is employed to iteratively infer reliable positive and negative API
pairs, and a binary classification model is trained to identify RAR
pairs from the 50,397 frequent API pairs. The seed RAR pairs for
initializing the inference process are obtained by matching the
50,397 frequent API pairs with the 26 seed Abs-RAR pairs, in the
same matching method presented in Section 3.3. Only one specific
seed pair, namely <ODatabaseDocumentTx.open(), ODatabaseDocu-
mentTx.close()> from the orientdb-core library, emerges from this
matching process. It’s worth noting that having only one seed does
not does not pose a threat to the validity of the re-implementation,
as SinkFinder is originally crafted to address scenarios where just
one seed is available.
Manual Assessment. We manually evaluate the quality of the
instantiated RAR pairs. Given the large number of concrete RAR
pairs (i.e., MiROK instantiates 6,314 concrete RAR pairs in total),
we first use a statistical sampling method [41] to randomly sample
372 concrete RAR pairs, which ensures the estimated precision is
in 0.05 error margin at 95% confidence level. Then we invite two
developers with more than four years Java development experience
to independently inspect the 372 sampled pairs. To make a proper
decision, the annotators can search various resources such as library
documentation and source code on GitHub to confirm whether the
API method pairs are actually for resource acquisition and release.
If their annotations for an instantiated RAR pair are inconsistent,
a third annotator is assigned to give an additional annotation to
resolve the conflict by a majority-win strategy. The Cohen’s Kappa
agreement [33] of the two annotators is 0.917, indicating substantial
agreement.

5.2.2 Results. In total, MiROK instantiates 1,197 valid Abs-RAR
pairs into 6,314 RAR pairs from 2,261 libraries. Among the 372 sam-
pled instantiated RAR pairs, 93.3% (347) are confirmed to be valid. In
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contrast, the baseline SinkFinder demonstrates an inability to iden-
tify any RAR pair when tested on the same extensive code corpus as
MiROK. Based on the provided seed, SinkFinder infers only one reli-
able positive API pair <ODatabaseDocumentTx.create(), ODatabase-
DocumentTx.close()>, causing it fails to perform the iterative reliable
pair inference and the subsequent API pair classification. The main
reason is that SinkFinder relies on a set of closely-related APIs
to train high-quality API embeddings; however, when the code
corpus is large, there are too many APIs from different libraries,
whose relevance is rather loose, resulting in much less effective
API embeddings. Our experimental results show that SinkFinder is
not applicable when mining RAR pairs from a large code corpus of
different libraries.

Summary: MiROK instantiates 1,197 valid Abs-RAR pairs
into 6,314 RAR pairs in 2,261 libraries, and 93.3% of them are
valid.

5.3 RQ3.a: Resource Leaks in Online Code

Examples

As reported by existing work [12, 54], a non-negligible (e.g., 30%)
portion of online code examples (e.g., code snippets in the accepted
answers of Stack Overflow posts) may contain defects, such as
security issues or resource leak issues, which would further be
widely reused by developers in other projects. Therefore, in this
RQ, we incorporate our mined Abs-RAR pairs into a light resource
leak detection analysis approach to detect resource leaks in online
code examples from Stack Overflow posts.

5.3.1 Protocol. We introduce the resource leak detection analysis
baseline, the online code example dataset, and evaluation procedure
used in this RQ.
Benchmark. We construct a online code example benchmark
which contains 46,389 Java code snippets in Stack Overflow. In
particular, we first include all the posts tagged with “<java>” from
the Stack Overflow dump [1]; then we extract the code snippets
surrounded with the tag pair “<pre><code>” and “</code></pre>”
from their accepted answers; lastly, we filter out those low-quality
code examples with syntactic errors. In this way, we finally collect
a benchmark of 46,389 online code examples.
Resource leak analysis baseline. Existing resource leak analysis
tools mainly work at byte-code level and are only applicable for a
complete compilable project. However, online code examples are
often short code snippets without a complete project-level context,
and thus existing resource leak analysis tools cannot be directly
applied to detect resource leaks in online code examples. Therefore,
in this RQ, we first implement a lightweight resource leak analysis
approach, which takes Abs-RAR pairs as input and parses code
snippets to detect resource leaks at source code level. In particular,
for a given code snippet, the lightweight detector first extracts a
method call sequence 𝑆 in the same way as Section 3.1 and trans-
forms all method calls into the form [O VB NP REST ] in the same
way as Section 3.2.1; then for each Abs-RAR pair ⟨𝑟𝑒𝑠 , 𝑎𝑐𝑞 / 𝑟𝑒𝑙⟩, the
method sequence 𝑆 could be considered as containing a resource
leak, if (1) a method call 𝑜.𝑚1 in 𝑆 matches 𝑟𝑒𝑠.𝑎𝑐𝑞, and (2) these
is no another method call 𝑜.𝑚2 in 𝑆 that appears after 𝑜.𝑚1 and
matches 𝑟𝑒𝑠.𝑟𝑒𝑙 . We further compare the resource leaks reported by

(a) Resource Leak for Abs-RAR Pair ⟨zip, <init> / close⟩

(b) Resource Leak for Abs-RAR Pair ⟨socket, <init> / close⟩

Figure 5: Examples of Valid Resource Leaks

the lightweight detector when it is incorporated with the 26 basic
seed Abs-RAR pairs or with our mined 1,197 valid Abs-RAR pairs.
Evaluation procedure. We manually evaluate the reported re-
source leaks in online code examples. In particular, we first ran-
domly select 256 cases out of all the 761 detected resource leaks,
and the sample size 256 is calculated based on the statistical sam-
pling method [41], which ensures the estimated precision is in 0.05
error margin at 95% confidence level. Two developers who have
more than four years’ Java development experience independently
examine the 256 resource leaks and annotate whether the they are
true or not. The annotators could search various technical docu-
ments and source code on Google and GitHub to understand the
given code examples as well as the reported resource leak defects.
If their annotations for a case are inconsistent, a third annotator
is assigned to give an additional annotation to resolve the conflict
by a majority-win strategy. The Cohen’s Kappa agreement [33] of
the two annotators is 0.929 in our evaluation procedure, indicating
substantial agreement.

5.3.2 Results. The detector reports 4.5× more resource leaks with
our mined Abs-RAR pairs compared to with the basic seed Abs-
RAR pairs. In particular, the detector with our mined Abs-RAR
pairs reports 761 resource leaks, while only reports 168 resource
leaks with the basic seed Abs-RAR pairs. Among the 256 sampled
resource leaks reported by the detector with our Abs-RAR pairs ,
73.4% (188) are manually checked as true.

Figure 5 shows two examples of the valid resource leak defects.
In the two examples, the resource “zip” and “socket” are acquired by
the constructors but not released using the “close” operations. To
detect these resource leak defects, we can analyze the resource oper-
ations in the code at the conceptual level and do not require knowl-
edge about the corresponding APIs (e.g., “ZipFile” and “Socket”) or
libraries.

We further analyze the incorrect resource leak defects that are
reported by our approach and find that most of them are caused
by the inherent limitations in source-code-level analysis (such as
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the ambiguous identifiers in code snippets) or the lack of library-
specific knowledge. In fact, it is hard to address these limitations
for online code examples, as they are often source code snippets
without global project contexts.

Summary: With our Abs-RAR pairs, even a simplistic re-
source leak analysis approach could identify 761 resource leaks
in the 46,389 online code examples, and 73.4% of them are man-
ually checked as true resource leaks. The detector reports 4.5X
more resource leaks with our Abs-RAR pairs compared to with
the basic seed Abs-RAR pairs.

5.4 RQ3.b: Resource Leaks in Open-source

Projects

In this RQ, we incorporate our generated RAR pairs with existing
resource leak detection tool to investigate whether it could detect
more resource leaks in open-source projects.

5.4.1 Protocol. We introduce the resource leak detection analy-
sis baseline, the open-source project benchmark, and evaluation
procedure used in this RQ.
Benchmark.We construct a benchmark of 10 open-source projects
from GitHub. In particular, we first select 5,000 Java project repos-
itories with more than 20 stars from Github, then filter out the
projects that cannot be successfully compiled with “pom.xml” or do
not contain any relevant API method of our RAR pairs. To ensure
the diversity of projects, we then randomly select 10 projects from
the remaining projects. The detailed information of our projects
could be found in our replication package [6].
Resource leak analysis baseline. In this RQ, we select the state-
of-the-art resource leak detection tool FindBugs [2] as the analysis
baseline, as it is a representative static analysis tool that could
support general resource leak detection and has been widely used
in previous work [44]. In particular, the original FindBugs includes a
predefined RAR pair pool which contains stream related RAR pairs.
We enhance the original FindBugs by further extending its original
RAR pool with our 6,314 newly generated RAR pairs. We denote the
enhanced FindBugs as FindBugs*. We apply the original FindBugs
and the enhanced FindBugs* to scan projects in the benchmark,
respectively.
Evaluation procedure. We manually check the validity of all the
resource leaks reported by the original FindBugs and FindBugs*. In
particular, two developers with more than four years Java devel-
opment experience independently examine the reported resource
leaks. A third annotator is assigned to resolve the conflict cases by
a majority-win strategy.

5.4.2 Results. The original FindBugs reports 9 resource leaks with
4 of them being true resource leaks (i.e., 44.4%); with our RAR
pairs, FindBugs* reports 15 resource leaks with 7 of them being
true resource leaks (i.e., 46.7%). We further report 3 newly-detected
unknown defects to the developers. By the submission time, one of
them have been confirmed by the developers. Figure 6 shows the
confirmed defect1 that is newly detected based on our unique RAR
pair <NetClient.connect(), NetClient.close()> of library vertx-core.

1https://github.com/folio-org/okapi/pull/1303

Figure 6: The Confirmed Resource Leak Defect

As shown in the figure, the resource leak occurs, as the NetClient
resource c is acquired (in line c.connect(...)) but without subsequently
calling the release method c.close(...). The original FindBugs fails
to detect this resource leak, as its initial RAR pair pool does not
contain the RAR pair <NetClient.connect(), NetClient.close()> and it
is unaware of NetClient being a resource object.

Summary: Our new RAR pairs help existing resource leak
detection tool FindBugs report more unknown defects without
reducing its precision. Our results indicate that our mined
RAR pairs could be incorporated into existing resource leak
detection to enable more powerful resource leak detection.

5.5 RQ4: Impact of Each Mining Strategy

In this RQ, we investigate the contribution of each mining strategy
(i.e., rule-based Abs-RAR pair expansion and learning-based Abs-
RAR pair identification).

5.5.1 Protocol. We compare the effectiveness of the following vari-
ants of MiROK to study the contribution of each mining strategy:
(1) MiROK-L, which removes learning-based Abs-RAR pair identifi-
cation and only includes rule-based Abs-RAR pair expansion; and
(2) MiROK-R, which removes rule-based Abs-RAR pair expansion
and only includes learning-based Abs-RAR pair identification.

5.5.2 Results. The results of the impact of the two mining strate-
gies are shown in Figure 7, which provides the numbers of themined
Abs-RAR pairs in different iterations. We could observe thatMiROK
mines muchmore Abs-RAR pairs with two strategies together.With
the learning-based Abs-RAR pair identification removed, MiROK-L

only mines a few Abs-RAR pairs in the first iteration and cannot
mine more abstract Abs-RAR pairs in the subsequent iterations.
With the rule-based Abs-RAR pair expansion removed, MiROK-R

only mines 38.0% fewer Abs-RAR pairs than the completeMiROK.
These results suggest that both the two strategies are important for
MiROK, and both strategies are complementary in their capabilities
of Abs-RAR pair mining. In particular, rule-based Abs-RAR pair
expansion can derive high-quality Abs-RAR pairs from existing
ones based on simple rules and plays an important role in early
iterations, while learning-based Abs-RAR pair identification can
continuously identify Abs-RAR pairs in a broader scope.
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Figure 7: Numbers of Mined Abs-RAR Pairs with Different

MiROK Variants

Summary: Both the rule-based Abs-RAR pair expansion and
the learning-based Abs-RAR pair identification are important
forMiROK. These two strategies are complementary in their
capabilities of Abs-RAR pair mining.

6 THREATS TO VALIDITY

The threats to the internal validity of our studies lie in the random-
ness of data sampling and the subjectiveness in data annotation.
To mitigate these threats, we follow commonly-used data sam-
pling strategy by controlling the estimated precision within 0.05
error margin at 95% confidence level, and multiple annotators are
involved with high agreement coefficients. Thee threats to the ex-
ternal validity lies in the benchmarks used by our work, which
cannot guarantee the generality of our findings. To minimize such
threats, we leverage a large scale of code corpus and libraries and
include two resource leak detection scenarios for evaluation. We
believe it is interesting future work to extend MiROK to other pro-
gramming languages and incorporatingMiROKwith more resource
leak analysis tools.

7 CONCLUSIONS AND FUTUREWORK

In this work, we propose MiROK, a novel mining approach which
represents resource-operation knowledge as abstract resource ac-
quisition/release operation pairs (Abs-RAR pairs), and mine such
Abs-RAR pairs from a large code corpus. Given a large code cor-
pus, MiROK first mines Abs-RAR pairs with novel rule-based pair
expansion and learning-based pair identification strategies, and
then instantiates these Abs-RAR pairs into concrete RAR pairs. We
implement MiROK and apply it to mine RAR pairs from a large
code corpus of 1,454,224 Java methods and 20,000 Maven libraries.
We then perform an extensive evaluation to investigate the mining
effectiveness of MiROK and the practical usage of its mined RAR
pairs for supporting resource leak detection. Our results show that
MiROK mines 1,313 new Abs-RAR pairs and instantiates them into
6,314 RAR pairs with a high precision (i.e., 93.3%). In addition, we
feed our mined RAR pairs to existing resource leak analysis ap-
proaches, and help them detect more resource leak bugs in both
online code examples and open-source projects. Our results indi-
cate both the high quality and practical usage of our mined RAR

pairs. In addition, we further perform an ablation study to show
the contribution of each mining strategy inMiROK.

8 DATA AVAILABILITY

Our replication package is at [6].
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