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ABSTRACT
Automated Program Repair (APR) techniques have drawn wide at-
tention from both academia and industry. Meanwhile, one main
limitation with the current state-of-the-art APR tools is that patches
passing all the original tests are not necessarily the correct ones
wanted by developers, i.e., the plausible patch problem. To date,
various Patch-Correctness Checking (PCC) techniques have been
proposed to address this important issue. However, they are only
evaluated on very limited datasets as the APR tools used for gen-
erating such patches can only explore a small subset of the search
space of possible patches, posing serious threats to external validity
to existing PCC studies. In this paper, we construct an extensive
PCC dataset, 𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ (the largest manually labeled PCC dataset to
our knowledge), to revisit all nine state-of-the-art PCC techniques.
More specifically, our PCC dataset 𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ includes 1,988 patches
generated from the recent PraPR APR tool, which leverages highly-
optimized bytecode-level patch executions and can exhaustively ex-
plore all possible plausible patcheswithin its large predefined search
space (including well-known fixing patterns from various prior APR
tools). Our extensive study of representative PCC techniques on
𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎhas revealed various findings, including: 1) the assump-
tion made by existing static PCC techniques that correct patches
are more similar to buggy code than incorrect plausible patches no
longer holds, 2) state-of-the-art learning-based techniques tend to
suffer from the dataset overfitting problem, 3) while dynamic tech-
niques overall retain their effectiveness on our new dataset, their
performance drops substantially on patches with more complicated
changes and 4) the very recent naturalness-based techniques can
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substantially outperform traditional static techniques and could be a
promising direction for PCC. Based on our findings, we also provide
various guidelines/suggestions for advancing PCC in the near future.
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1 INTRODUCTION
Automated ProgramRepair (APR) [17, 23, 47, 84] aims to fix software
bugs with minimal human intervention to speed up software devel-
opment. Recently various APR techniques have been proposed and
extensively studied inacademia [19, 28, 36, 38, 61, 83]anddrawnwide
attention fromthe industry [6, 41, 45, 57, 58].A typicalAPRtechnique
first generates various candidate patches based on different strate-
gies, such as template-based [28, 35, 36], heuristic-based [23, 84],
constraint-based [17, 47, 77] and learning-based [10, 33, 42] ones;
then, it validates all the candidate patches via software testing [19,
23, 42], static analysis [65], or even formal verification [8]. To date,
most APR systems leverage software testing for patch validation
due to the popularity and effectiveness of testing in practice.

Although test-based patch validation has been shown to be prac-
tical , it suffers from the test overfitting issue – patches passing all
the tests (i.e., plausible patches) may not always be correct for all in-
puts [55]becausesoftware tests canhardlycoverall possibleprogram
behaviors for real-world systems. Therefore, the developers are rec-
ommended tomanually inspect the plausible patches to find the final
correct ones.However, suchmanual inspectioncanbeextremelychal-
lenging and time consuming given the large number of potentially
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plausible patches and code complexity for real-world systems [19].
To relieve the burden, various techniques have been proposed to au-
tomate Patch-Correctness Checking (PCC) –while static techniques
infer patch correctness based on patched code snippets analysis [30,
68, 70], dynamic techniques rely on runtime information to deter-
minepatch correctness [76, 80]. In recent years, researchershavealso
leveraged the recent advances in deep code embedding for PCC [63].

While existing PCC techniques have shown promising results,
they are mostly studied on limited PCC datasets, since the APR tools
used for constructing such datasets can only explore a very small por-
tionof thepossible patch search space andareappliedona limitednum-
ber of subjects. First, the leveraged APR tools often incorporate ag-
gressive patch pruning strategies so as to fixmore bugs on their stud-
ied subjects, whichmakes these tools only explore a small portion of
the possible patch search space andmay fail to fix bugs on other sub-
jects. For example, theseAPR tools have been shown to be overfitting
to the studied subjects, e.g., [16] showed that the studied 11 tools fix
significantly more bugs in Defects4J V1.2 than other benchmarks. In
addition, the widely-adopted SimFix/CapGen tools [23, 70] can only
fix 0 and 2 more bugs respectively on a newer version of Defects4J
with∼200more bugs [19]. In this way, the possible plausible patches
are also missed by such APR tools, and thus absent in the resulting
PCC dataset. Second, due to the efficiency issue, most studied APR
tools (e.g., SimFix) terminate patch exploration as soon as they find
thefirst plausible patch. In thisway, a largenumberof possible plausi-
ble patches can also bemissed by such techniques. For example, even
including 21 APR tools, the current largest manually labeled PCC
dataset [66] only has 902 patches for Defects4J V1.2 in total. Third,
most of the PCC datasets are built on the popular old version De-
fects4J V1.2 with a limited number of subjects (i.e.six subjects), mak-
ing it unclear whether the findings can generalize to other subjects.

In this paper, we aim to revisit nine existing state-of-the-art PCC
techniques with a more extensive and real-world dataset to more
faithfully evaluate their effectiveness in practice. To this end, we
first construct an extensive dataset, 𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ (dataset for Practical
Patch Correctness Checking), for PCC based on the recent PraPR
repair system [19].We choose PraPR given the following reasons: (1)
its predefined patch search space is large since it applies popular well-
knownfixing templates fromvarious priorAPRwork [3, 53, 60], (2) it
is the only available APR tool (to our knowledge) that can exhaustively
explore the entire predefined patch search space since it generates and
validates patches based on its highly optimized on-the-fly bytecode
manipulation. In this way, PraPR can generate all plausible patches
within its clearly defined patch search space, which can largely avoid
the dataset overfitting issue [19] as an ideal candidate for construct-
ing PCC datasets. We apply PraPR to both the widely studied De-
fects4J V1.2 dataset [25] with 395 bugs and the latest Defects4J V2.0
datasetwith 11 additional subject systems and 401 additional bugs. In
total, our dataset 𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ contains 1,988 plausible patches, includ-
ing 83 correct patches and 1,905 overfitting patches after manual la-
beling. To our knowledge, this is the largestmanually labeled dataset
for PCC. Then, based on our new datasets, we perform an extensive
study of prior PCC techniques, including state-of-the-art static [30,
62, 68, 70, 71], dynamic [76, 80], and learning-based [63, 81]PCCtech-
niques.Our empirical study reveals various findings andprovide var-
ious guidelines/suggestions for further advancing PCC techniques.

Overall, this paper makes the following contributions:

• Real-world Dataset.We create a large-scale realistic dataset,
𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ, for PCC. To our knowledge, this is the first dataset
based on exhaustive patch search space exploration, as well as
the largest manually labeled patch dataset for PCC to date.

• Extensive Study.We perform an extensive study of state-of-the-
art PCC techniques, including static, dynamic, and learning-based
ones, on our newly constructed dataset. In total, our experiments
cost 580 CPU days, including static analysis, code embedding, test
generation, and test execution for all patches within our dataset.

• Practical Impacts.Our empirical study reveals various results
the community should be aware of, as well as providing various
practical guidelines for future PCCwork, e.g., the dynamic PCC
techniques can no longer work for patches on more complex and
real-world bugs and should be largely improved.

2 BACKGROUNDANDRELATEDWORK
In this section, we first introduce the background on automated
program repair and patch correctness checking, and then motivate
our study by systematically revisiting datasets used in the literature.
AutomatedProgramRepair.AutomatedProgramRepair (APR) [17,
23, 28, 36, 47, 61, 83, 84] aims at fixing bugs with minimal human
intervention. Researchers have proposed various APR techniques,
which can be categorized according to howpatches are generated: (1)
Heuristic-based APR [32, 54, 84] leverages heuristics to explore the
search space of patches; (2) Template-based APR [28, 35, 36] incorpo-
ratespatterns summarized fromhistorical developerpatches toguide
patch generation; (3)Constraint-basedAPR [17, 47, 77] leverages con-
straint solving to directly synthesize patches; (4) Learning-based
APR [10, 33, 42, 72, 73, 85] utilizes learning techniques, including re-
cent Large Language Models (LLMs) [4, 9, 43, 50, 64, 67], to generate
patches. APR tools then leverage software testing [19, 23, 42], static
analysis [65], or even formal verification [8] to validate the patches.
Patch Correctness Checking.Most APR techniques rely on soft-
ware tests tovalidatepatches, assumingthatpatches thatpassall tests
arecorrect.However, thisassumptioncanbeproblematicas testsmay
notdetectallpossiblebugs.Toaddress the issueofoverfittingpatches,
Patch Correctness Checking (PCC) [29] techniques have been pro-
posed to differentiate overfitting patches from correct patches.

There are two application scenarios for PCC techniques, with
oracle patch information or without. In the oracle-based scenario, the
plausible patches that exhibit differently from the oracle patch are
deemed as overfitting. Note that oracle-based PCC is usually used
for APR experimentation, and cannot be applied to real-world bug
fixing where the oracle patch information is unavailable. In contrast,
oracle-absent PCC can identify potential overfitting patches without
oracle, thus can be applied in real-world bug fixing. Therefore, we
only focus on the oracle-absent techniques.

According to whether dynamic patch execution information is
required, traditional PCC techniques can be categorized into static
and dynamic techniques. In particular, static techniques leverage
static code features [30, 68, 70], pre-defined anti-patterns [62] or
even code naturalness [71] to predict patch correctness. Dynamic
techniques leverage run-time information, such as crash ormemory-
safety issues used in Opad [80] and test execution traces used in
Patch-Sim [76]. Recently, researchers have also started exploring
advanced machine learning and deep learning techniques for PCC.
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Seminal research [81] characterizes patch code with pre-defined
features, while more recent work [11, 63] directly encodes patch
code via embedding models (e.g., BERT [15]) and learns to predict
the probability of each patches being overfitting.
Existing PCCDatasets.We revisit the existing peer-refereed lit-
erature on automated program repair and PCC based on the APR
review [49] before 2022, and summarize the datasets used in their
evaluation. Table 1 presents the characteristics of datasets used in
existing work. Note that for the patches generated by APR tools,
we check whether the early stop mechanism is enabled during APR
procedure as shown in Column “Early stop”. From the table, we can
find that although involving variousAPR tools, subjects, andpatches,
existing PCC datasets can still be insufficient for evaluating PCC,
since they can only explore a very small portion of the possible patch
search space on limited bugs due to the following reasons.

First, existing datasets mainly include the plausible patches gener-
ated by overfitting APR tools, which incorporate aggressive pruning
strategies and thus could only explore a small ratio of patch search
spaces.As shown in recentwork [16, 19], most existingAPR tools are
overfitting to the Defects4J V1.2 [25] benchmark. Themain reason is
that suchAPRtoolsoften leverageaggressiveandspecificpatchprun-
ing strategies so as to fixmore bugs,which could explore a small ratio
of patch search spaces and may suffer from the dataset-overfitting
issue [61]. For example, the recent SimFix/CapGen tools [23, 70] can
only fix 0/2 more bugs on additional ∼200 more bugs [19]; also, 11
APR tools have been shown to perform substantially worse on other
benchmarks than the widely-used Defects4J V1.2 [16]. In this way,
the possible plausible patches that should have been generated are
missed, and thus absent in the resulting PCC dataset.

Second, existing datasets only include the first one/few plausible
patches generated by APR tools due to efficiency issue. As shown in
the table, most APR tools (e.g., SimFix [23]) employ the early stop
mechanism, which terminates patch execution as soon as they find
the first plausible patch for the sake of efficiency. Therefore, existing
PCC dataset may miss a large number of possible plausible patches
that can be potentially generated by these APR tools. According to
Noller et al. [51], developers expectAPRquickly (30-60min) generate
5-10 patches each bug. But among the 16 APR tools studied in [38],
the most effective one, SimFix, set a timeout of 300 minutes for each
bug but only generated 68 patches onDefects4J V1.2. Therefore, APR
tools for previous datasets are neither practical nor efficient. In fact,
even with 21 APR tools, the existing largest manually labeled PCC
dataset [66] has only 902 patches forDefects4J V1.2;meanwhile a sin-
gle APR (i.e., SequenceR [10]) can only generate at most 73 patches.

Third,most PCC datasets are built on the popular Defects4J V1.2 (old
version) with only six subjects, making it unclear whether the findings
can generalize to other subjects (e.g., the newer version Defects4J V2.0
with 11more subjects).As shown in the table, themajority of existing
PCC datasets are generated from the subjects in the most widely
used benchmarkDefects4J V1.2. Therefore, it remains unknownhow
existing PCC techniques perform on patches from other subjects.

To address the limitations above, in thiswork,we construct amore
extensive and real-world dataset, 𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ, so as to revisit all repre-
sentative PCC techniques. In particular, our dataset𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ is built
on the plausible patches generated by the recent byte-code level APR
tool PraPR [19]. We choose PraPR since 1) its predefined patch search
space is large since it applies popular well-known fixing templates

from various prior APRwork [3, 53, 60], and 2) it is the baseline APR
tool that can exhaustively explore the predefined patch search space
due to its highly optimized on-the-fly bytecode manipulation. Here,
the predefined patch search space refers to all the possible patches that
an APR tool could theoretically generate for a given bug (with all its
applicablefixpatterns inall suspiciousbuggy locations). For example,
the template-based APR tools PraPR and TBar could generate 3,704
and 3,375 patches (which are the predefined patch space for PraPR
and TBar) with their own defined fix patterns for the bug Chart-1,
respectively. An exhaustive explorationmeans that all the patches in
the predefined patch search space are generated and validated by the
APR tool. Typically, existingAPR tools suffer from large search space
and time-consuming non-trivial validation, therefore, they cannot
afford the exhaustive explorationandadopt the early exitmechanism
to control the exploration costs; while PraPR is the only tool that is
able to perform the exhaustive exploration since its highly optimized
on-the-fly bytecodemanipulation significantly accelerates the patch
validation. In particular, PraPR is highly efficient, because it does
not require compilation (it directly generates patches on bytecode
level) and it can validate a bunch of patches in one JVM. For example,
for the bug Chart-1, it only takes PraPR 149s in total to generate
& validate all the 3,704 patches while it would take TBar 34s for
even validating one single compilable patch. In this way, PraPR can
generate all plausible patcheswithin the clearly defined patch search
space, which other APR tools fail to reach. Furthermore, in addition
to themostwidely usedDefects4J V1.2 dataset [25], we further apply
PraPR to the most recent version of Defects4J dataset, i.e., Defects4J
V2.0 with 11 additional subject systems and 401 additional bugs.

3 DATASETCONSTRUCTION
3.1 Subjects
Our datasets are constructed with patches generated for the subjects
in Defects4J [25] due to the following reasons: 1) Defects4J contains
hundreds of real bugs for real-world projects and has become the
most widely studied APR benchmark in the literature, 2) most prior
PCC studieswere performed onDefects4J [25, 63, 66, 74, 76, 82], thus
enabling a more direct/fair comparison with prior work. We include
all subjects fromDefects4J V1.2 (with 395 bugs from 6 projects) since
it is the most widely used Defects4J version in prior APR and PCC
work [25, 63, 66, 68, 70, 74, 76, 82]. Furthermore,we also study the lat-
est Defects4J V2.0, which includes 11 additional projects with 401 ad-
ditional bugs(17 projects with 796 bugs in total), to study the dataset
overfitting issue of existing PCCwork, i.e., whether the prior PCC
experimental results can generalize to the newer Defects4J version.
Please refer to our website [79] for detailed statistics of subjects.

3.2 Patch Collection
Plausible Patch Collection. For each studied buggy version from
Defects4J, we first run PraPR on it to generate all possible plausible
patches (i.e., thepatchespassingall the tests) in thebytecode level.We
further decompile these bytecode-level plausible patches into source-
code-level patches since existing PCC techniqueswork at the source-
code level.Wemake the followingefforts to ensure thedecompilation
process as precise as possible. First, we configure PraPR to include all
the required debugging information in the resulting bytecode-level
patches. Second, we leverage the state-of-the-art decompiler JD-
Core [1] to decompile patched bytecode files. Third, we only locate
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Table 1: Datasets used in existing PCCwork

Work Studied technique Scale Ratio Dataset source
(correct/overfitting) Subject source Patch source Early stop

Tan et al. [62] Anti-patterns 289 30/259 CoREBench [7], GenProg [32] All fromAPR tools
GenProg, mGenProg [62], SPR [40], mSPR [62] 4/4

Xin et al. [74] DiffTGen 89 10/79 Defects4J V1.2 All fromAPR tools
jGenProg, jKali, NPol and HDRepair 4/4

Le et al. [30] S3 85 25/60 100 bugs from 62 subjects All fromAPR tools
S3, Enumerative [56], CVC4 [56], Angelix [48] 4/4

Yang et al. [80] Opad 449 22/427 45 bugs from 7 subjects All fromAPR tools
GenProg, AE [69], Kali [55], and SPR 4/4

Xin et al. [68] ssFix 153 122/31 Defects4J V1.2
exclude Mockito

All fromAPR tools
ssFix, jGenProg, jKali [46], Nopol, HDRepair [31], ACS 5/5

Xiong et al. [76] Patch-Sim 139 29/110 Defects4J V1.2
exclude Closure, Mockito

All fromAPR tools
jGenPro [46], Nopol [78], jKali, ACS [77], HDRepair 5/5

Ye et al. [82] RGT 638 257/381 Defects4J V1.2 All fromAPR tools
ACS, Arja, CapGen, etc., 14 tools in total 10/14

Wen et al. [70] CapGen [70] 202 28/174 Defects4J V1.2
exclude Closure, Mockito

All fromAPR tools
CapGen 0/1

Xin et al. [75] sharpFix [75] 82 56/26 Bugs.jar
127 bugs from 7 projects in Bugs.jar

All fromAPR tools
sharpFix, ssFix [68] 2/2

Tian et al. [63] Embedding-based 1,000 468/532 Defects4J V1.2
778 fromAPR tools

RSRepair-A [84], jKali, ACS, SimFix [23], TBar [37], etc., 17 tools in total
232 from developer patches (*Supplemented to balance the dataset)

12/17

Wang et al. [66] 12 PCC techniques 902 248/654 Defects4J V1.2 All fromAPR tools
jGenProg, DynaMoth [17], SequencR [10], etc., 21 tools in total 16/21

Lin et al. [34] Cache 49,694 25,589/24,105 RepairThemAll [16], ManySStuBs4J [26] Overfitting patches fromAPR tools and correct patches from developer patches
jGenProg, jKali, Nopol, etc., 11 APR tools in total and human patches 11/11

Ye et al. [81] ODS 10,302 2,003/8,299 RepairThemAll, Defects4J V2.0 developer patches Overfitting patches fromAPR tools and correct patches from developer patches
jGenProg, jKali, Nopol, etc., 11 APR tools in total and human patches 11/11

𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ 9 PCC techniques 1,988 83/1,905 Defects4J V2.0 All fromAPR tools
PraPR 0/1

the patched line in the decompiled file (note that PraPR only changes
one line on bytecode level patches), and patch the original buggy
sourcefile to obtain a potential patch at this level. Finally,weperform
the sanity check to ensure the decompiled source-code-level patches
indeed pass all the tests. Finally, we obtain 1,988 plausible patches.
Patch Correctness Identification. For each plausible patch, we
thenmanually determine its correctness by comparing it to the devel-
oper patch. We follow the labeling procedure in previous work [38]
and the patches that satisfy the following criteria are labeled as
correct: (1) the patches are syntactically identical to the developer
patches, or (2) the patches are semantically equivalent to the devel-
operpatchesaccording to therules summarizedbyexistingwork[38].
Due to space limits, the detailed rules are listed on our website [2].

Otherwise, the patches are labeled as overfitting.We involve three
participants with 3+ years Java development experience in the man-
ual labeling procedure: two participants first label each plausible
patch individually, and a third participant is then introduced to re-
solve the conflicts. Theagreement ratio of thefirst twoparticipants is
98.99%, and there are 20 out of 1,988 patches (1.01%) that receive con-
flict annotations fromthe twoparticipants. For these 20 conflict cases,
the third participantwouldfirst re-checkwhether they follow the ten
semantically-equivalent rules. If the case is not covered by the rules,
he/she would determine the correctness of the plausible patches
based on the project context as well as the reference to the issue link
or bug report. In this way, among all the 1,988 new plausible patches,
83 are labelled as correct and 1,905 labelled as overfitting ones.

4 STUDYDESIGN
4.1 Research Questions
Based on our newly constructed datasets, we revisit all state-of-the-
art PCC techniques via the following research questions:
• RQ1:How does static PCC perform on our datasets?
• RQ2:How does learning-based PCC perform on our datasets?
• RQ3:How does dynamic PCC perform on our datasets?

4.2 Studied Techniques
Our study selects existing state-of-the-art techniques that are de-
signed for or can be adapted to the PCC task. Specifically, the selected
techniques can be broadly categorized into three categories, includ-
ing static, dynamic, and learning-based techniques. We only include
those techniques that do not require the oracle information (i.e., the
developer patches) since the practical usefulness of those techniques
requiring the oracle information is compromised [66].

4.2.1 Static Techniques. Wang et al. have empirically investigated
the effectiveness of static features extracted from three tools [66],
namely ssFix [68], S3 [30] and CapGen [70], and then utilized such
features to check patch correctness. We use identical experiment
settings andmethodology to assess patch correctness in new dataset.

S3:S3proposed six features tomeasure the syntactic and semantic
distance between patched code and the original buggy code [30].
Among them,AST differencing and cosine similarity are utilized to
prioritize and identify correct patches. Specifically, the sum of these
features is computedas the suspiciousness score. Patcheswithhigher
scores are more likely to be overfitting according to the previous
study[5]whichclaimscorrectpatchesaremoresimilar to theoriginal
buggy code, and thus possess fewermodifications. In addition,we ex-
clude the other three features in this study following prior work [66].
Specifically,model counting and output coverage are excluded since
they cannot be generalized to all the generated patches [66]. Besides,
Anti-patterns utilized in S3 is excluded here since we utilize it as a
stand-alone tool, following the previous study [66].

ssFix: ssFix focused on the token-based syntax representation of
code to identify syntax-related code fragments to generate correct
patches. Specifically, structural token similarity and conceptual token
similarity are calculated tomeasure the similarity between the buggy
code and patched code. Similar to S3, the sum of these features is
used to rank patches. Patches with higher scores are ranked higher.

CapGen: CapGen designed three context-aware features to pri-
oritize correct patches over overfitting ones, namely the genealogy
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similarity, variable similarity, and dependency similarity respectively.
Although such features are not initially proposed for PCC, they can
still be adapted to assess patch correctness from the view of static
features. Specifically, following the existing study [66], the product
of these similarity scores is used to rank and prioritize patches, and
patches with higher scores are considered more likely to be correct.

For the above three static techniques,we apply theTop-N strategy
to identify correct patches followingpriorwork [66]. Specifically, the
Top-N prioritized patches are labeled as correct while others as over-
fitting,whereN is thenumberof correctpatches inourdataset follow-
ing prior studies [66]. Tomitigate the effect ofN,we also show the av-
erage rankingof correct patches per bug (i.e., denoted asAVR) to eval-
uate the ability of prioritizing correct patches (detailed in Section 4.4).

Anti-patterns:Anti-patterns provides a set of generic forbidden
transformations tohelpobtainprogrampatcheswithhigherqualities
withminimal effort. To apply theseAnti-patterns onour owndataset,
wefirstmap theAnti-patterns toPraPR’smutation rules [19] through
manual inspection. If the rules fall into a specific pattern, we deem
those patches generated by the mutation rule as overfitting. Such a
strategy is the same as that adopted by the existing study [66]. In this
way, we observe that patches generated by PraPR mainly fall into
four of the seven anti-patterns, including A1:Anti-delete CFG Exit
Node, A2:Anti-delete Control Statement, A5:Anti-delete Loop-Counter
and A6:Anti-append Early Exit. Therefore, we classify the patches
that fall into these rules as overfitting and the others as correct.

Codenaturalness:Cross entropy [14] for codemeasures the nat-
uralness of code against the code languagemodel [20]. Very recently,
researchers have shown that code naturalness in terms of entropy
values computed by LLMs can help rank patches for faster program
repair [27, 72]. Furthermore, Xia et al. [71] demonstrated for the first
time that it is possible to use such entropy values to perform patch
correctness checking, i.e., correct patches can be more natural than
overfitting patches. However, there is no comprehensive study on
how such entropy-based techniques perform in PCC datasets to our
knowledge.Fora listof tokens in thecorpusofLLM, themeanentropy
can be calculated as the negative log probability of each token as
𝑚𝑒𝑎𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦=−∑𝑛

𝑖=1
𝑙𝑜𝑔 (𝑝𝑡𝑖 )

𝑛 ,where𝑡𝑖 refers to the ith tokenof the
sequence and𝑝𝑡𝑖 refers to themodel probability of token 𝑡𝑖 . Similarly,
the sum entropy can be computed as 𝑠𝑢𝑚_𝑒𝑛𝑡𝑟𝑜𝑝𝑦=−∑𝑛

𝑖=1𝑙𝑜𝑔(𝑝𝑡𝑖 ).
Patches with lower sum or mean entropies are considered more nat-
ural and will be ranked higher. In our evaluation, we use the model
CodeT5-large [67], and follow the same experimental setting with
prior work [71]. For entropy-based techniques, we only use AVR
(as described in section 4.4) to evaluate the effectiveness of patch
ranking since the entropy is dependent on the context of bugs and
improper for comparing patches across different bugs.

4.2.2 Dynamic Techniques. Dynamic techniques can capture test-
ingbehavior and result for patch assessment. Specifically,we include
SOTA techniques widely studied in the literature [66, 76, 80]:

Opad: Opad is designed based on the hypothesis that patches
shouldnot introducenewcrash ormemory-safety problems [80]. There-
fore, any patch violating those rules is regarded as overfitting. Note
that Opad is originally designed for C programs utilizing fuzzing
techniques to generate new test cases. To adapt it on Java, we lever-
age two state-of-the-art test generation tools, i.e., Evosuite [18] and
Randoop [52], to generate test cases based on the buggy version.

Opad based on Evosuite and Randoop are denoted as E-Opad and
R-Opad respectively, following the previous study [66]. Specifically,
for Evosuite and Randoop, we generate 30 test suites for each buggy
programwitha timebudgetof 600 seconds for each test suiteutilizing
existing test generation module in Defects4J framework. We finally
successfully generate 44,937 test suites on 796 buggy programs in
total. After test generation, we first run the generated tests (for five
times) on the original buggy programs to remove flaky tests. After
that, we run the remaining ones on the patched programs. If any
crash occurs or any exception is thrown,Opadwill identify the patch
as overfitting, otherwise it will identify the patch as correct.

Patch-Sim: Patch-Sim is a similarity-based PCC tool utilizing
the tests generated by automated test generation tools (Randoop in
the original study [76] and both Randoop and Evosuite inWang et
al.’s study [66]) as the test inputs. It assumes that tests with similar
executions are likely to have similar results. The basic idea of Patch-
Sim is that, if the patched program behaves similarly on the passed
tests and behaves differently on the failed tests compared with the
origin program, the patch tends to be correct. Patch-Sim proposes to
calculate the similarity of program execution behaviors (denoted as
patch distance), and then classifies patches with it. Note that in the
original study, Xiong et al. used Randoop to generate test suites [76].
Besides, according toWang et al.’s study [66], the tests generated by
Randoop perform better than those by Evosuite. We, thus, choose
Randoop as the test generation tool in this study. To apply Patch-Sim
on 𝑃𝑟𝑎𝑃𝑅𝑣1.2, we generate 6,570 test cases for related projects in
total by ourselves. Combining with the test suites generated by the
existing study [66], we obtain 10,404 test cases for Patch-Sim.

4.2.3 Learning-based Techniques. Besides the traditional PCC tools,
we include novel learning-based embedding technique (hereafter de-
noted as Embedding). We also include ODS proposed by Ye et al. [81]
which aims to learn patch correctness via feature engineering. Lin et
al. [34] proposed Cache with similar ideas but their tools are cur-
rently not executable due to broken scripts and incomplete artifacts.

Embedding: Code Embedding can transform source code into
distributed representations as fixed-length vectors by utilizing su-
pervised machine learning algorithms. Tian et al. initially proposed
utilizing code embedding techniques to identify correct patches
among plausible ones [63]. To be specific, Tian et al. fed both the
buggy and patched code fragment for each patch to embeddingmod-
els (e.g., BERT [15] ) to obtain embedding vectors. After generating
the initial vectors, they merged the pair of vectors for each patch
according to the classification algorithm [21]. With the embedding
vectors, Tian et al. captured the crossed features (e.g., cosine similar-
ity) required in the classification. In the end, these features were fed
to the classifier for identifying if the patch is correct or overfitting.
Other embedding techniques[11, 12] mostly follow highly similar
ideas and cannot outperform Tian et al. ’s work [63]. Therefore, we
utilize the best-performing model in Tian et al. ’s study, denoted
as BERT-LR, as the representative in this study for further investi-
gation. Specifically, we applied the model learned by the BERT-LR
method to our dataset, to investigate how it performs. Following the
experimental setting as adopted by the existing study, we utilize the
dataset used in [63] for training and our collected benchmark for
testing. Note that we filtered out those overlapping patches between
Tian’s and our datasets in the training process.
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ODS:ODS (OverfittingDetectionSystem) extracts a largenumber
of static code features and leverages ensemble learning based on de-
cision trees to predict patch correctness [81]. For a given patch, ODS
extracts 202 code features, including 150 code description features
representing the characteristics of the patch’s ingredients and its
context at different granularity, 26 repair pattern features encoded
with human knowledge on repair strategies and 26 contextual syn-
tactic features that encode the scope and similarity information in
the source code. To evaluateODS in our dataset,we follow the experi-
mental setup in the original paper [81].Wefirst use the code analyzer
provided by ODS to extract features of patches in our dataset and
then reuse the model trained by the authors for prediction.

4.3 Studied Datasets
Table 2: The patch datasets in this study

Subdataset ID Subjects APR Tools #Patch #Overfit #Correct
𝑃𝑟𝑎𝑃𝑅𝑣1.2 Defects4J V1.2 PraPR 1,311 1,264 47
𝑃𝑟𝑎𝑃𝑅𝑣2.0 Defects4J V2.0 PraPR 1,988 1,905 83
𝑀𝑒𝑟𝑔𝑒𝑣2.0 Defects4J V2.0 PraPR + 21 tools 2,760 2,489 271
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 Defects4J V2.0 PraPR + 21 tools 542 271 271

4.3.1 𝑊𝑎𝑛𝑔𝑣1.2. Wang et al. [66] collected patches on Defects4J
V1.2 from 21 APR tools, including 16 APR tools evaluated under
the same configuration by a previous study [38] and other well-
known APR tools that were not included in [38], including JAID [8],
SketchFix [22], CapGen [70], SOFix [39] and SequenceR [10]. They
performed a plausibility check to see whether the selected patches
are indeed plausible and discarded others. Finally, they obtained 902
patches in total, including 248 correct and 654 overfitting patches.

4.3.2 𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ. The plausible patches collected from Section 3.2
constituteourmainsubdataset𝑃𝑟𝑎𝑃𝑅𝑣2.0,with1,988plausiblepatches
generated by PraPR on Defects4J V2.0. Based on the main dataset,
we further construct three sub-datasets for more thorough study of
PCCwork. Table 2 presents the details.

𝑃𝑟𝑎𝑃𝑅𝑣1.2. This dataset includes all 1,311 plausible patches gen-
erated by PraPR on Defects4J V1.2, separated from the main dataset
to compare with prior PCC studies on the same Defects4J version.

𝑀𝑒𝑟𝑔𝑒𝑣2.0. Though PraPR contains overlapping patch fixing pat-
terns with many other APR tools, it is still important to consider
patches from other APR tools for more comprehensive PCC evalu-
ation. Hence, we further combine our 𝑃𝑟𝑎𝑃𝑅𝑣2.0 with the existing
largest labeleddatasetderived fromAPRtools, i.e.,𝑊𝑎𝑛𝑔𝑣1.2 [66] that
includes 902 plausible patches generated by 21 otherAPR tools. After
carefully removing theduplicates between𝑊𝑎𝑛𝑔𝑣1.2 andour dataset,
we finally obtain 2,760 plausible patches in this merged dataset.

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0. Table 2 shows that the𝑀𝑒𝑟𝑔𝑒𝑣2.0 dataset is largely
imbalanced with mostly overfitting patches. While PCC studies
frequently leverage imbalanced datasets, we further construct a bal-
anced dataset based on𝑀𝑒𝑟𝑔𝑒𝑣2.0 for more thorough evaluations.
Specifically, we keep all correct patches from 𝑀𝑒𝑟𝑔𝑒𝑣2.0 and ran-
domly sample the same number of overfitting patches. To mitigate
the bias in randomness, we repeat the random sampling process for
ten times and present the average results on 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0.

To our knowledge, the datasets newly constructed in thiswork are
the largest manually labeled datasets for evaluating PCC. For exam-
ple, PraPR alone generates 1,988 plausible patches while the existing

largest PCC dataset has only 902 plausible patches (Lin et al. [34] and
Ye et al. [81] have datasets with ~50,000 and ~10,000 patches but they
are not manually labeled). In addition, merging the patches gener-
ated by PraPR with the existing datasets could further form a larger
labeled dataset (i.e.,𝑀𝑒𝑟𝑔𝑒𝑣2.0). The large scale of our new datasets
is credited to the high efficiency and exhaustive search strategies of
PraPR, which help collect many plausible patches that are missed
by the other APR tools due to their efficiency issues or their early
termination. For example, PraPR alone generates 39 unique plausible
patches for the Defects4J bug Math-28, while the other existing 21 APR
tools generate 7 plausible patches in total (5 of them are unique). The
main reason could be that other tools early stop after finding the first
plausible patch while PraPR exhaustively explores the whole search
space. Therefore, at least 34 out of the 39 plausible patches generated
by PraPR are not visited by the existing 21 APR tools. We evaluate
the nine PCC techniques on both𝑊𝑎𝑛𝑔𝑣1.2 and 𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ. Note that
𝑊𝑎𝑛𝑔𝑣1.2 is used as the baseline dataset from the previous study [66].

4.4 Metrics
Following the recent works on patch correctness checking [63, 66,
76, 80], we evaluate PCC techniques against following metrics:
• TP: # of truly overfitting patches identified as overfitting.
• TN: # of truly correct patches identified as correct.
• FP: # of truly correct patches identified as overfitting.
• FN: # of truly overfitting patches identified as correct.
• Precision: =𝑇𝑃/(𝑇𝑃+𝐹𝑃). Denoted as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.
• Recall: =𝑇𝑃/(𝑇𝑃+𝐹𝑁 ). Denoted as 𝑅𝑒𝑐𝑎𝑙𝑙 .
• Recall of Correct: =𝑇𝑁 /(𝑇𝑁 +𝐹𝑃). Denoted as 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 .
• PR-AUC:AreaUnder Precision-RecallCurve [13].
• AVR: theAVerageRanking of correct patches for bugswhich have
both overfitting and correct patches.

• Correct patch ratio: =𝑇𝑁 /(𝑇𝑁 +𝐹𝑁 ). Denoted as CPR.
• Accuracy: = (𝑇𝑃+𝑇𝑁 )/(𝑇𝑃+𝐹𝑃+𝑇𝑁 +𝐹𝑁 ). Denoted as ACC.

Studies suggest that PCC techniques should not mistakenly ex-
clude correct patches [66, 76, 81], i.e., the FP should be as low as
possible. However, when the dataset is imbalanced (i.e., mostly over-
fitting patches), 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 can be biased and overrated since 𝐹𝑃 is
often much smaller than𝑇𝑃 , thus posing significant effects to the
final results. Therefore, following the previous work on imbalanced
datasets [76], we further include the metric 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 (the ratio of
correctly identified correct patches) for complementary fair compar-
isons. In fact, 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 is crucial since rejecting a correct patch may
cause a bug to be unfixed. Besides, We also utilize the PR-AUC [13]
metric to eliminate the effects caused by imbalanced datasets [59].

Note that PR-AUC is not applicable for rule-based techniques
including Opad, Patch-Sim, Anti-patterns and ODS since the re-
sults are discrete (either 0 or 1). For the static techniques (S3, Cap-
Gen, ssFix and code naturalness) based on feature score ranking,
we leverage AVR to show their average ranking of correct patches,
i.e., the smaller ranking is better. For example, given AVR a(b), a
is the average ranking of the first correct patch in each bug while
b is the average number of patches in each bug. Note that AVR
is calculated on the subset of bugs that have both overfitting and
correct patches, since patch ranking techniques would perform the
same when there are only correct or overfitting patches. In addi-
tion, the numbers of bugs with both patches/numbers of patches
per bug are 50/9.1(𝑊𝑎𝑛𝑔𝑣1.2), 26/10.7(𝑃𝑟𝑎𝑃𝑅𝑣1.2), 39/9.6(𝑃𝑟𝑎𝑃𝑅𝑣2.0),
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76/12.9(𝑀𝑒𝑟𝑔𝑒𝑣2.0), respectively. In summary, an effective PCC tech-
nique should achieve high 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 , 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 and PR-AUC,
with low AVR. For ODS evaluation we reuse their metrics with two
additional ones CPR and ACC following the original study [81].
4.5 Threats to Validity
The threats to internal validity mainly lie in the implementation of
studied PCC techniques. To reduce such threats, we reuse existing
implementations whenever possible, and have carefully reviewed
all our code and script. In addition, to mitigate the bias in the patch
correctness labeling,we involvemultiple participants, followwidely-
used criteria summarized from existingwork [38], and have released
all our patches for public review. Tomitigate the potential bias of ran-
domness in sampling, we repeat the sampling process for ten times
anduse theaverage results.The threats to external validityaremainly
concerned with the generalizability of our findings. We mitigate the
threats from a single APR tool by further merging our datasets with
previous datasets. The threats can be further reduced by including
more new bugs, e.g., with theGrowingBugs dataset [24]. The threats
to construct validity mainly lie in the metrics used in our study. To
mitigate the threats, we have included all popular metrics for PCC,
including 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 , 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 , AVR, PR-AUC, CPR and ACC.

5 RESULTANALYSIS
5.1 RQ1: Static Techniques
5.1.1 Static Code features. For studying all the static code features,
we follow the same experimental setting as the recent study [66].
The detailed experimental results for the three studied techniques
are shown in Table 3. From the table, we can observe that compared
with original scores on𝑊𝑎𝑛𝑔𝑣1.2, the𝑅𝑒𝑐𝑎𝑙𝑙 scores all increasewhile
the 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 scores all substantially decrease on the 𝑃𝑟𝑎𝑃𝑅𝑣1.2 and
𝑃𝑟𝑎𝑃𝑅𝑣2.0 datasets.Onedirect reason is that the twonewdatasets are
extremely imbalanced (withmostly overfitting patches). Meanwhile,
the extremely low𝑅𝑒𝑐𝑎𝑙𝑙𝑐 scores (i.e., only 5%-20% of correct patches
are identified as correct) still demonstrate that such techniques can
hardly be useful in practice. The PR-AUC scores of all features for
all datasets are below or around 50%. Taking 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 dataset for
example, two of the features get a PR-AUC score slightly over 50%
(the proportion of positive sample and the expected PR-AUC for
random classification model) and one of them gets less than 50%,
indicating that these features are hardly useful to identify overfitting
patches. The experimental results on the more balanced𝑀𝑒𝑟𝑔𝑒𝑣2.0
and 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 datasets further confirm this observation. For exam-
ple, on the balanced dataset 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0, the 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 remains similar
to the prior study on𝑊𝑎𝑛𝑔𝑣1.2 [66] (i.e., ∼45%), while the 𝑅𝑒𝑐𝑎𝑙𝑙
substantially drops over 30 percentage points for all three static tech-
niques (e.g., 78.7-46.5%for ssFix).AVRisabettermetric for simulating
actual efforts of selecting one correct patch from plausible patches.
Fromthe tables,wecanobserve that for𝑊𝑎𝑛𝑔𝑣1.2 dataset, developers
would examine 2.1∼2.8 patches on average (depending on the cho-
sen technique) until the first correct patch is found. However, when
PraPR dataset is considered or merged with𝑊𝑎𝑛𝑔𝑣1.2, the AVRs rise
to 5.5∼8.2. In other words, when larger patch space is included, effec-
tiveness of all similarity-based static tools significantly degrades and
the cost to identify correct patch for each bug significantly increases.

To understand the reasons behind these results, we further inves-
tigate the detailed raw patch scores computed by different tools as

Table 3: Performance of static features on different datasets

Dataset TP FP TN FN 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 PR-AUC AVR

S3

𝑊𝑎𝑛𝑔𝑣1.2 517 137 111 137 79.1% 79.1% 44.8% 45.3% 2.8(9.1)
𝑃𝑟𝑎𝑃𝑅𝑣1.2 1222 42 5 42 96.7% 96.7% 10.6% 4.1% 8.2(10.7)
𝑃𝑟𝑎𝑃𝑅𝑣2.0 1826 79 4 79 95.9% 95.9% 4.8% 5.0% 7.2(9.6)
𝑀𝑒𝑟𝑔𝑒𝑣2.0 2250 239 32 239 90.4% 90.4% 11.8% 15.3% 7.0(12.9)

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 120 151 120 151 44.3% 44.3% 44.3% 51.1% 2.39(5.24)

ssFix

𝑊𝑎𝑛𝑔𝑣1.2 515 139 109 139 78.7% 78.7% 44.0% 43.8% 2.7(9.1)
𝑃𝑟𝑎𝑃𝑅𝑣1.2 1221 43 4 43 96.6% 96.6% 8.5% 8.7% 6.8(10.7)
𝑃𝑟𝑎𝑃𝑅𝑣2.0 1826 79 4 79 95.9% 95.9% 4.8% 6.7% 6.3(9.6)
𝑀𝑒𝑟𝑔𝑒𝑣2.0 2242 247 24 247 90.1% 90.1% 8.9% 10.1% 6.1(12.9)

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 126 145 126 145 46.5% 46.5% 46.5% 48.3% 2.27(5.48)

CapGen

𝑊𝑎𝑛𝑔𝑣1.2 510 144 104 144 78.0% 78.0% 41.9% 46.2% 2.1(9.1)
𝑃𝑟𝑎𝑃𝑅𝑣1.2 1222 42 5 42 96.7% 96.7% 10.6% 14.9% 7.4(10.7)
𝑃𝑟𝑎𝑃𝑅𝑣2.0 1827 78 5 78 95.9% 95.9% 6.0% 11.4% 6.6(9.6)
𝑀𝑒𝑟𝑔𝑒𝑣2.0 2253 236 35 236 90.5% 90.5% 12.9% 16.9% 5.5(12.9)

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 133 138 133 138 49.1% 49.1% 49.1% 54.8% 1.98(5.20)

Table 4: Average scores based on static features

Patches ssFix S3 CapGen

𝑃𝑟𝑎𝑃𝑅𝑣2.0Correct 1.52 10.60 0.37
𝑃𝑟𝑎𝑃𝑅𝑣2.0Overfitting 1.56 15.73 0.41

𝑊𝑎𝑛𝑔𝑣1.2Correct 1.49 11.71 0.44
𝑊𝑎𝑛𝑔𝑣1.2Overfitting 1.35 26.35 0.25

Developer 1.16 40.64 0.26

shown in Table 4. Note that for ssFix and CapGen, the scores reveal
the similarity between the buggy code and the patches; while for
S3, the scores represent the edit distance of the patches. Such tech-
niques are designed based on the widely-accepted assumption that
correct patches should bemore similar to the buggy code.To investigate
the validity of such a widely-accepted assumption, we split all the
patches into four groups: 𝑃𝑟𝑎𝑃𝑅𝑣1.2correct patches, 𝑃𝑟𝑎𝑃𝑅𝑣1.2 over-
fitting patches,𝑊𝑎𝑛𝑔𝑣1.2 correct patches and𝑊𝑎𝑛𝑔𝑣1.2 overfitting
patches. Furthermore, we also include the developer patches for com-
parison. As shown in Table 4, if we focus on the dataset of𝑊𝑎𝑛𝑔𝑣1.2,
the average scores of correct patches for ssFix andCapGenare 10.37%
and 76% higher than the overfitting patches respectively.

Besides, the average score of the correct patches for S3 is 55.56%
lower than of the overfitting patches. AMann-WhitneyUTest [44] is
conducted to evaluate the significance of the difference and it shows
that thep-values are relatively 4.19∗10−7, 3.00∗10−11 and9.72∗10−9
for ssFix, CapGen and S3 respectively. That is to say, correct patches
in𝑊𝑎𝑛𝑔𝑣1.2 in general share higher similarities with the buggy code
and introduce fewer modifications than overfitting patches. Such re-
sults actually support the widely-accepted assumption, and can also
explain why these tools exhibit promising results on𝑊𝑎𝑛𝑔𝑣1.2 [66]
and their original publications [30, 68, 70].

However, suchanassumptionmightno longerholdonourdatasets.
Specifically, on 𝑃𝑟𝑎𝑃𝑅𝑣2.0, for ssFix and CapGen, the average sim-
ilarity scores of the overfitting patches are even 2.63% and 10.81%
higher than those of the correct patches (the p-values are 0.070 and
0.106 respectively). Moreover, if we compare with correct devel-
oper patches, the average score of ssFix on overfitting patches in
𝑊𝑎𝑛𝑔𝑣1.2 is also 14.66% higher than that of developer patches (with
p-value of 1.01∗10−11) while average scores of ssFix and CapGen on
𝑃𝑟𝑎𝑃𝑅𝑣2.0 overfitting patches are 34.48% and 57.69%higher than that
of developer patches (with p-values of 1.42∗10−54 and 5.53∗10−12).
Such results are contradictory to those observed merely based on
𝑊𝑎𝑛𝑔𝑣1.2 [66]. For S3, despite the results observed on 𝑃𝑟𝑎𝑃𝑅𝑣2.0
share a similar trend with those on𝑊𝑎𝑛𝑔𝑣1.2, we can still observe
contradictory results if compared with developer patches. Specif-
ically, the average distance scores of S3 on developer patches are
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54.23% higher in𝑊𝑎𝑛𝑔𝑣1.2 and 158.36% higher in 𝑃𝑟𝑎𝑃𝑅𝑣2.0 than
overfitting patches (p-values of 1.87∗10−25 and 4.92∗10−81).We also
investigate the difference of 8 corresponding sub-features separately
which show similar trend, presented on our website [79].

Finding 1: The widely-accepted assumption made by existing
similarity-based static techniques that correct patches in general
share higher similarities with the buggy code is no longer valid
on our new dataset with exhaustive patch generation.

Through further investigation, we observe that one major issue
of similarity-based static techniques is that they can produce diverse
similarity scores for semantic-equivalent patches. For instance, List-
ing 1 shows a simple example patch.

1 - if (this.rightBlock != null) {
2 + if (false) {
3 RectangleConstraint c4 = new RectangleConstraint...

Listing 1: A PraPR patch replacing condition with false

Table 5: Static PCC on semantically equivalent patches

Chart-13-mutant-6 TokenStrct TokenConpt ASTDist ASTCosDist

mutate condition to false 0.829 0.773 6 0.025
remove whole block 0.344 0.419 51 0.097

Chart-13-mutant-6 VariableDist VariableSimi SyntaxSimi SemanticSimi

mutate condition to false 3 0.5 0.245 0.011
remove whole block 20 0.393 0.347 0.618

This patch simply replaces the conditional expressionwith false,
which is semantically equivalent to removing the whole if block.
The scores generated by the three static techniques are totally dif-
ferent, as shown in Table 5. The “mutate condition to false” row
displays the scores of the original patch, i.e., replace the conditional
expressionwithfalse, while the “removewhole block” rowdenotes
the scores of the simplified patch, i.e., simply removing the whole
if block. Among the eight static features, the similarity scores of
ssFix features of original patch are significantly higher compared
with the simplified patch (i.e., the patch with the whole if block
removed) 140.99% and 84.49% respectively, while the edit distance
scores for S3 of the original patch have much lower scores than the
simplified patch. For CapGen features, the scores are also completely
different from each other. These cases are frequently observed in
our dataset, i.e., a patch can be simplified to its equivalent patch.
There are 54 mutating condition to false patches among the 1,311
𝑃𝑟𝑎𝑃𝑅𝑣1.2 patches, in addition to other patcheswith similar patterns.
Such results provide stronger evidence that merely considering the
syntactic similarity is inadequate for PCC while more advanced
semantics-based techniques should be proposed.

Finding 2: All three studied static techniques can compute
totally different scores for semantically equivalent patches, in-
dicating that future static PCC techniques should incorporate
more advanced semantics analysis.

5.1.2 Anti-patterns. Table6presents theresultsofAnti-patterns [62]
onour fournewdatasets and its original results inpreviouswork [66].
From the table, we can observe that Anti-patterns performs signif-
icantly worse on PraPR patches by misidentifying a larger propor-
tion of correct patches as overfitting and omitting more overfitting
patches. Compared to the previous dataset, Anti-patterns exhibits

both lower 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 and 𝑅𝑒𝑐𝑎𝑙𝑙 on 𝑃𝑟𝑎𝑃𝑅𝑣1.2. Although 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

has a suspected improvement, the actual cause is the heavily imbal-
anced datasets, i.e., the overwhelming number of overfitting patches
over the correct ones. Actually, the results on the balanced dataset
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 further confirm the worse performance.

Table 6: Performance of Anti-patterns

Datasets TP FP TN FN 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑊𝑎𝑛𝑔𝑣1.2 219 37 211 435 85.55% 33.49% 85.08%
𝑃𝑟𝑎𝑃𝑅𝑣1.2 174 10 37 1,090 94.57% 13.77% 78.72%
𝑃𝑟𝑎𝑃𝑅𝑣2.0 361 28 55 1,544 92.80% 18.95% 66.27%
𝑀𝑒𝑟𝑔𝑒𝑣2.0 559 56 215 1,930 90.89% 22.46% 79.34%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 41 56 215 230 42.27% 15.13% 79.34%

We further looked into the root cause of Anti-patterns’ poor per-
formance on our datasets with a misclassified example generated
exclusively by PraPR and has not been included in any previous
dataset. Listing 2 presents an FN example that Anti-patterns fails to
filter. The overfitting patch makes a subtle modification by remov-
ing the method invocation calculateBottomInset (i.e., only one
token changed). Such a modification does not fall into any existing
Anti-patterns, thus cannot be excluded during PCC. Actually, the
loss of efficiency derives from the original intention of Anti-patterns.
Anti-patterns was designed initially to filter out overfitting patches
that have major wrongness, instead of capturing subtle changes.
However, most of the patches in our dataset contain subtle changes.
Meanwhile, other APR tools are also prone to generate patches with
subtle changes in practice. As a result, Anti-patterns is faced with
the risk of insufficiency in evaluating PCC in future work.

1 - double b = calculateBottomInset(h);
2 + double b = h;
3 area.setRect(area.getX() + l,
4 area.getY() + t, w - l - r, h - t - b);

Listing 2: An overfitting patchmisclassified by Anti-patterns

Finding 3:Deriving from the original intention, Anti-patterns
performs much worse on our datasets due to its limited capa-
bility of identifying subtle changes in patches. Considering the
widespread occurrence of subtle changes in all APR-generated
patches, Anti-patterns may not be a good choice for evaluating
PCC in future work.

5.1.3 Naturalness-based techniques. Table7showsthat inalldatasets,
both Sum Entropy andMean Entropy can outperform all three static
techniques. The box plot of distribution of rankings is listed on
our website. Specifically, in terms of AVR, the Sum / Mean entropy
outperforms the best performed static technique by 11.21%/11.21%
(on 𝑊𝑎𝑛𝑔𝑣1.2), 30.13%/31.31% (on 𝑃𝑟𝑎𝑃𝑅𝑣1.2), 34.82%/25.40% (on
𝑃𝑟𝑎𝑃𝑅𝑣2.0), 44.08%/36.79% (on 𝑀𝑒𝑟𝑔𝑒𝑣2.0) and 25.60%/25.79% (on
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0). Interestingly, our results also confirm prior work [71]
that Sum Entropy performs slightly better thanMean Entropy for
PCC. The reason is that Sum Entropy calculates the entire sequence
entropy for code naturalness computation, and considers both code
naturalness and length information. To conclude, naturalness-based
techniques show greater potential in PCC and this is the first, to our
best knowledge, evaluation of naturalness-based techniques on PCC
datasets. We appeal to the community that more attention should
be drawn into this direction.
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Table 7: Performance of code naturalness

AVR ssFix s3 CapGen Sum Entropy Mean Entropy

𝑊𝑎𝑛𝑔𝑣1.2 2.72(9.1) 2.8(9.1) 2.14(9.1) 1.9(9.1) 1.9(9.1)
𝑃𝑟𝑎𝑃𝑅𝑣1.2 6.77(10.69) 8.15(10.69) 7.38(10.69) 4.73(10.69) 4.65(10.69)
𝑃𝑟𝑎𝑃𝑅𝑣2.0 6.26(9.64) 7.15(9.64) 6.62(9.64) 4.08(9.64) 4.67(9.64)
𝑀𝑒𝑟𝑔𝑒𝑣2.0 6.12(12.87) 7(12.87) 5.49(12.87) 3.07(12.87) 3.47(12.87)
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 2.27(5.48) 2.39(5.24) 1.98(5.20) 1.49(5.26) 1.54(5.45)

Finding 4:Naturalness-based techniques can substantially out-
perform all static code features in patch ranking, and Sum En-
tropy performs slightly better thanMean Entropy.

5.2 RQ2: Learning-based Techniques

Table 8: Performance of the embedding-based technique

Datasets TP FP TN FN 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 PR-AUC

𝑇𝑖𝑎𝑛𝑣1.2 85 14 16 24 85.86% 77.98% 53.33% N/A
𝑃𝑟𝑎𝑃𝑅𝑣1.2 822 15 27 227 98.21% 78.36% 64.29% 11.86%
𝑃𝑟𝑎𝑃𝑅𝑣2.0 1,220 23 53 433 97.52% 72.81% 59.21% 15.51%
𝑃𝑟𝑎𝑃𝑅𝑣2.0−𝑣1.2 398 8 26 206 96.14% 65.89% 52.94% 19.69%

5.2.1 Embedding technique. Table 8 presents the results of the
embedding-based technique [63] on our datasets, i.e., 𝑃𝑟𝑎𝑃𝑅𝑣1.2
and 𝑃𝑟𝑎𝑃𝑅𝑣2.0. Since there is a large overlap between the train-
ing set of the embedding technique and𝑀𝑒𝑟𝑔𝑒𝑣2.0/𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0, i.e.,
patches collected by Liu et al. [38], we do not consider𝑀𝑒𝑟𝑔𝑒𝑣2.0 or
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 in this RQ. For comparison,we also present the results of
the embedding-based technique in its original paper (i.e.,𝑇𝑖𝑎𝑛𝑣1.2).

We can observe that the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 increases in our new datasets
while the 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 drop on both 𝑃𝑟𝑎𝑃𝑅𝑣1.2 and 𝑃𝑟𝑎𝑃𝑅𝑣2.0.
The decrease of𝑅𝑒𝑐𝑎𝑙𝑙 and𝑅𝑒𝑐𝑎𝑙𝑙𝑐 becomes even larger in the newly
added patches, i.e., 𝑃𝑟𝑎𝑃𝑅𝑣2.0−𝑣1.2. Such abnormal performance is
due to the heavily imbalanced dataset. Therefore, we should pay
more attention to PR-AUC, the metric which is least affected by
the imbalanced dataset. Obviously, the embedding-based technique
tends to perform badly on PraPR patches with PR-AUC to be less
than 20% on all our new datasets. Furthermore, with the datasets
to be gradually more balanced through 𝑃𝑟𝑎𝑃𝑅𝑣1.2, 𝑃𝑟𝑎𝑃𝑅𝑣2.0 and
𝑃𝑟𝑎𝑃𝑅𝑣2.0−𝑣1.2 (i.e., exclusivebugs in𝑃𝑟𝑎𝑃𝑅𝑣2.0), theperformanceof
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 keeps dropping while the PR-AUC in-
creases,which indicates theworse performance ismore credible. The
results further confirms that the embedding-based technique suffers
from thedataset overfitting issue: it performsworse on thepatches of
subjects that are different from training set. Thus, we encourage fu-
ture learning-based PCCwork to consider across-dataset evaluation.

We then look into the potential reasons for such a decrement.
The intuition of embedding-based PCC techniques is that the cosine
similarity between the embedding vectors of correct patches and
buggy code should be larger than the cosine similarity between the
embedding vectors of overfitting patches and buggy code. Tian et
al. [63] show that correct/overfitting patches in their dataset per-
fectly follow such an assumption. However, this assumption no
longer holds on the additional patches generated by PraPR. Figure 1
presents the distribution of the cosine similarity between the embed-
ding vectors of correct/overfitting patches and buggy code on the
original dataset in the embedding work [63] (i.e.,𝑇𝑖𝑎𝑛𝑣1.2) and our
datasets built onDefects4J V1.2 and additional bugs inDefects4J V2.0
(i.e.,𝑃𝑟𝑎𝑃𝑅𝑣1.2 and𝑃𝑟𝑎𝑃𝑅𝑣2.0−𝑣1.2). From thefigure,we observe that
different from the prior work [63], correct patches and overfitting

patches share very close distributions of similarity scores on our
datasets, which explains why the embedding-based technique ex-
hibits worse performance on PraPR patches. Furthermore, correct
patches even tend to have lower median similarity than overfitting
patches on𝑃𝑟𝑎𝑃𝑅𝑣2.0−𝑣1.2, demonstrating that the assumptionmade
by the embedding-based work no longer holds on our new dataset.

Figure 1: Similarity distribution on different datasets

Finding 5: The assumption that the cosine similarity between
the embeddings of correct patches and buggy code should be
larger than that between the embeddings of overfitting patches
and buggy code no longer holds. Also, the embedding-based
technique tends to suffer from the dataset overfitting issue.

5.2.2 ODS. Table 9 shows the result of ODS in our dataset. For
𝑊𝑎𝑛𝑔𝑣1.2, we directly reuse the results from [81]. It turns out that
the performance on 𝑃𝑟𝑎𝑃𝑅𝑣1.2 and 𝑃𝑟𝑎𝑃𝑅𝑣2.0 significantly drop for
𝑅𝑒𝑐𝑎𝑙𝑙𝑐 , CPR and ACC, e.g., CPR drops from ~84% to ~6%, which
means a lot of overfitting patches “escape” ODS and get misiden-
tified as correct. Similarly, the 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 drops because more correct
patches are classified as overfitting.

Table 9: Performance of ODS

ODS TP FP TN FN precision recall 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 F1 CPR accuracy

𝑊𝑎𝑛𝑔𝑣1.2 620 66 182 34 90.38% 94.80% 73.39% 92.54% 84.26% 88.91%
𝑃𝑟𝑎𝑃𝑅𝑣1.2 1034 32 14 229 97.00% 81.87% 30.43% 88.79% 5.76% 80.06%
𝑃𝑟𝑎𝑃𝑅𝑣2.0 2571 93 35 592 96.51% 81.28% 27.34% 88.24% 5.58% 79.19%

1 - double b = calculateBottomInset(h);
2 + double b = trimWidth(h);

Listing 3: An overfitting patch that escapes ODS

More interestingly, we evaluate ODS on developer patches and
found that the FP rate (ratio of developer patches identified as over-
fitting) is 43.52% and 41.56% on developer patches v1.2 and v2.0. To
figure out the potential reason that the performance drops, we care-
fully check the feature definitions inODSandunderstandwhyPraPR
patches can escape ODS. ODS defines 202 features in total (in three
groups). According to the feature analysis of ODS [81], the order
of importance of three groups of features is: Contextual Syntactic
Features (150) > Code Description Features (26) > Repair Pattern
Features (26). Note that ODS features are specific characteristics of
programs likewhether the patch variables are local, global, primitive,
etc., orwhether there’s codemove. For single-line replacement repair
tool PraPR, it normally makes simple change like replacing a vari-
able/constant/method with another one of the same type according
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to the mutators defined in [19]. Therefore, most PraPR patches do
not affect the majority of the ODS features at all.

Listing3 is anexamplepatch for bugChart-26 showinghowPraPR
patches escapeODS. PraPR generates 103 patches for this bug and 23
of them are classified as correct by ODS (while actually only two of
them are correct). 11 of them simply replace calculateLeftInset
with other APIs and are all identified as correct by ODS. Such cases
produce large amount of FNs and thus lead to very low CPR(~6%).

Finding 6: Features of ODS are too weak to identify overfitting
patches and miss a lot of overfitting patches in our dataset. Plus,
the high FP rate on developer patches is unbearable for PCC.

5.3 RQ3: Dynamic Techniques

5.3.1 Opad. Table 10 and Table 11 respectively show the results for
E-Opad (Opad with EvoSuite) and R-Opad (Opad with Randoop).

Table 10: Performance of E-Opad on different datasets

E-Opad TP FP TN FN 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑊𝑎𝑛𝑔𝑣1.2 92 0 248 562 100.00% 14.07% 100.00%
𝑃𝑟𝑎𝑃𝑅𝑣1.2 148 0 47 1,116 100.00% 11.71% 100.00%
𝑃𝑟𝑎𝑃𝑅𝑣2.0 267 2 81 1,638 99.26% 14.02% 97.59%
𝑀𝑒𝑟𝑔𝑒𝑣2.0 344 2 269 2,145 99.42% 13.82% 99.26%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 48 2 269 223 96.00% 17.71% 99.26%

Table 11: Performance of R-Opad on different datasets

R-Opad TP FP TN FN 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑊𝑎𝑛𝑔𝑣1.2 67 0 248 587 100.00% 10.24% 100.00%
𝑃𝑟𝑎𝑃𝑅𝑣1.2 238 12 35 1,026 95.20% 18.83% 74.47%
𝑃𝑟𝑎𝑃𝑅𝑣2.0 346 15 68 1,559 95.84% 18.16% 81.93%
𝑀𝑒𝑟𝑔𝑒𝑣2.0 408 15 256 2,081 96.45% 16.39% 94.46%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0 44 15 256 227 74.58% 16.24% 94.46%

We can observe that except for R-Opad on 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑣2.0, Opad
achieves a precision over 95% on all the datasets, while the achieved
recall ranges from 11.71% to 18.83%. The high precision with low
recall achieved by Opad is consistent with previous studies [66, 80].
Besides, the 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 also significantly outperforms other techniques
with respect to precision. Such results indicate that Opad can iden-
tify most of the correct patches and rarely classifies correct patches
as overfitting ones. In other words, the performance does not de-
grade much in our new datasets, and Opad is more stable than static
techniques. This falls into our intuition since such dynamic tools
based on test generation concern more towards code semantics in-
stead of syntactic elements. Meanwhile, similar to the findings from
prior work [66], Opad achieves a rather low recall on our datasets,
indicating that a substantial ratio of overfitting patches are not de-
tected. This is still a critical issue in PCC sincemanually filtering out
overfitting patches can be extremely costly for developers [76].

Finding 7: The performance of Opad overall tends to remain
similar on our new datasets, demonstrating the robustness of
such dynamic techniques. Meanwhile, consistent with the find-
ings in prior work, it achieves a rather low recall for incorrect
patches, which compromises its practical usefulness.

Though the precision achieved by Opad is still high in our new
datasets, it can no longer achieve 100% preision, i.e., a few correct
patches are misidentified as overfitting. This is inconsistent with the

results in previous studies for PCC [66, 80].Motivated by this, we fur-
ther investigated the FP cases and made the following observations.

1 - if (property == null) {
2 - return this;
3 - }
4 JsonFormat.Value format = findFormatO(serializers,property,handledType());...

Listing 4: A correct patchmisclassified by Opad

For instance, Listing 4 shows a correct patch which is identi-
fied as overfitting by Opad. Specifically, this patch removes a null
check for property. However, Opad is designed based on the tests
generated on the original buggy programs, thus being unaware of
such semantic changes. When stepping into method findFormatO
(at line 4 ) from a test, property is null, which is unexpected to
the tests generated on the original buggy program. Consequently, a
NullPointerExceptionwas thrown and in findFormatO, and thus
Opad mis-identified this patch as overfitting. Many other similar
cases have been observed for Opad. The reason could be that some
tests are generated on the buggy programs, based on some incorrect
contracts or preconditions.When the semantics of a programchange,
those preconditionsmaynot hold and thus fail a generated test.

Finding 8: The effectiveness of Opad might decay and it might
mistakenly identify correct patches as incorrect when the se-
mantic changes of the patches break certain conditions.

Sincedeveloperpatchesmighteven incur larger semantic changes,
we are curious to see whether such cases also happen on developer
patches. Unfortunately, there are no existing studies to our best
knowledge. However, this is an important study since APR tech-
niques can potentially fix more bugs and produce more developer
patches in the near future. As shown in Table 12, E-Opad and R-
Opad achieve 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 of 86.06% and 79.02%, respectively, which is
significantly lower than that on other datasets except for 𝑃𝑟𝑎𝑃𝑅𝑣1.2.
Specifically, Opad produces more FPs and achieves lower 𝑅𝑒𝑐𝑎𝑙𝑙𝑐
compared with previous study [66, 80].

Table 12: Opad/Patch-Sim on developer patches

TP FP TN FN 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

E-Opad 0 111 685 0 86.06%
R-Opad 0 167 629 0 79.02%

Patch-Sim 0 65 110 0 62.86%

1 @@ -483,9 +483,8 @@ public static int formatLongOctalOrBinaryBytes(
2 ...
3 if (length < 9) {...
4 + } else {
5 + formatBigIntegerBinary(value, buf, offset, length, negative);}
6 - formatBigIntegerBinary(value, buf, offset, length, negative);
7 buf[offset] = (byte) (negative ? 0xff : 0x80);
8 return offset + length;

Listing 5: A developer patchmisclassified by Opad

We furthermanually checked some FP cases in developer patches,
and Listing 5 is an example. Specifically, the developer patch moved
a statement into an else block with a condition length >= 9. The
failing test expects an IllegalArgumentException triggered by in-
valid parameters of formatBigIntegerBinary. The original state-
ment throwing that exception was not executed in the patched pro-
gram. Therefore, the program stepped over that statement andwhen
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executing the next statement (line 7), the parameter offset is -1,
triggering an ArrayIndexOutOfBoundsException.

Similar to the previous example, Opad is not aware of such seman-
tic changes andmisclassified that patch as overfitting.Actually,Opad
could produce more FPs when the patches get more complicated, i.e.,
different code structure or logic. This can be an important finding
since eventually APR techniques will be conquering more and more
complicated bugs, with more and more complicated patches.

Finding 9: Opad performs worse on developer patches, and
should be applied with caution on (future) automated APR tools
that can generate more complicated patches.

5.3.2 Patch-Sim. Table 13 presents the performance of Patch-Sim
on previous datasets (i.e.,𝑋𝑖𝑜𝑛𝑔𝑣1.2 from its original paper [76] and
𝑊𝑎𝑛𝑔𝑣1.2 from the previous study [66]) and our dataset. Note that
due to an implementation issue [76], Patch-Sim does not support
Defects4J V2.0 and subjects Closure and Mockito from Defects4J
V1.2. Hence, following prior work [76], we only consider the patches
supported by Patch-Sim fromDefects4J V1.2. Overall, 493 overfitting
and 10 correct patches in 𝑃𝑟𝑎𝑃𝑅𝑣1.2 are used.

Table 13: Performance of Patch-Sim on different datasets

Datasets TP FP TN FN 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑋𝑖𝑜𝑛𝑔𝑣1.2 62 0 29 48 100.00% 56.36% 100.00%
𝑊𝑎𝑛𝑔𝑣1.2 249 51 186 392 83.00% 38.85% 78.48%
𝑃𝑟𝑎𝑃𝑅𝑣1.2 210 3 7 283 98.59% 42.60% 70.00%

As shown in the table 13, Patch-Sim performs much worse on
our dataset compared with initial 𝑋𝑖𝑜𝑛𝑔𝑣1.2 results. For example,
Patch-Simachieves100%𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and𝑅𝑒𝑐𝑎𝑙𝑙𝑐 on itsoriginaldataset,
whereas on PraPR patches, both metrics are degraded, aligning with
previousfindings [66]. Patch-Sim is designedbasedon themild conse-
quence assumption that a passing test should behave similarly on the
correct patch and the buggy code. Therefore, the patch substantially
changing the behavior of passing tests would be regarded as overfit-
ting. Listing 6 presents a sample FP of Patch-Sim. In this example, the
correct patch modifies the condition, leading to significant control-
flow changes: on the buggy code, some passing tests can enter the if
block and then throw the exception, whereas on the patch code these
tests skip the if block and exception statement. Therefore, Patch-
Sim considers the behaviors of these passing tests changed substan-
tially, and further regards the patch as overfitting. However, correct
patches are also likely to introduce large behavioral changeswhereas
overfitting patches can also induce tiny impact on passing tests.

1 - if (fa * fb >= 0.0) {
2 + if (fa * fb > 0.0D) {
3 throw new ConvergenceException...}

Listing 6: A correct patchmisclassified by Patch-Sim

Finding 10: The assumption that passing tests should behave
similarly on correct patch code and buggy code can easily be
brokenwhena largerpatch space is considered, especially for the
correct patches with non-trivial modifications on control flow.

Table 12 presents the performance of Patch-Sim on 175 developer
patches from Defects4J V1.2 where Patch-Sim can be successfully
applied. Interestingly, Patch-Sim performs even worse on developer

patcheswith a𝑅𝑒𝑐𝑎𝑙𝑙𝑐 of only 62.86%, i.e., mis-classifying 37.14% cor-
rect patches as incorrect. Aftermanual inspection,wefind that devel-
oper patches often involve sophisticatedmodifications and thus pass-
ing tests behave very differently from buggy code. For example, List-
ing 7 presents a developer patch which mis-identified as overfitting
byPatch-Sim.Thepatchmodifiesmultiple lines, andseveralif-else
statements. Thus, it significantly affects the paths of some passing
tests. In fact, it is prevalent that developer patches contain such
sophisticated changes, and thus the assumption made by Patch-Sim
can be easily violated on developer patches. Such results show that
future PCCwork should exercise complex patches since advanced
APR tools can generate more complex patches in the near future.

1 - if(... && index < seqEnd - 1 && ...) {
2 + if(... && index < seqEnd - 2 && ...) {...}
3 + if(start == seqEnd) {
4 + return 0;
5 + }
6 ...
7 - while(input.charAt(end) != ';')
8 + while(end<seqEnd && ((input.charAt(end)>='0' && input.charAt(end)<='9')
9 + ||(input.charAt(end) >= 'a' && input.charAt(end) <= 'f')
10 + ||(input.charAt(end) >= 'A' && input.charAt(end) <= 'F') ) )
11 ...
12 + boolean semiNext = (end != seqEnd) && (input.charAt(end) == ';');
13 - return 2 + (end - start) + (isHex ? 1 : 0) + 1;
14 + return 2 + (end - start) + (isHex ? 1 : 0) + (semiNext ? 1 : 0);

Listing 7: A developer patchmisclassified by Patch-Sim

Finding 11: Patch-Simmisclassifies 30% correct patches as in-
correct on 𝑃𝑟𝑎𝑃𝑅𝑣1.2 and tends perform evenworse with 38.14%
misclassifion rate on complicated developer patches. Our re-
sults also suggest that future dynamic PCC techniques should
consider more complex patches for evaluation.

6 CONCLUSION
This paper constructed a comprehensive PCC dataset, 𝑃𝑟𝑎𝑃𝑎𝑡𝑐ℎ,
for revisiting state-of-the-art PCC techniques. Our study has re-
vealed various interesting findings, such as 1) the similarity-based
assumptions no longer hold in the new dataset, 2) naturalness-based
techniques can substantially outperform static code features, 3)
embedding-basedtechniques and feature engineering (ODS) canmis-
classify a lot of correct patches and 4) performance of dynamic tech-
niques remain stable in thenewdataset butwill decaywhenhandling
patches with complex semantic changes (like developer patches).
These findings may save a lot research efforts for the research com-
munity andpoint out future directions, like leveraging LLMs for PCC
and includingmore realistic bugs to enhance diversity of the dataset.

DATAAVAILABILITY
Please see https://github.com/claudeyj/patch_correctness or our
archived artifact [79].
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