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ABSTRACT

Coverage-based fault localization has been extensively studied in
the literature due to its effectiveness and lightweightness for real-
world systems. However, existing techniques often utilize coverage
in an oversimplified way by abstracting detailed coverage into num-
bers of tests or boolean vectors, thus limiting their effectiveness in
practice. In this work, we present a novel coverage-based fault lo-
calization technique, Grace, which fully utilizes detailed coverage
information with graph-based representation learning. Our intu-
ition is that coverage can be regarded as connective relationships
between tests and program entities, which can be inherently and
integrally represented by a graph structure: with tests and program
entities as nodes, while with coverage and code structures as edges.
Therefore, we first propose a novel graph-based representation to
reserve all detailed coverage information and fine-grained code
structures into one graph. Then we leverage Gated Graph Neural
Network to learn valuable features from the graph-based coverage
representation and rank program entities in a listwiseway. Our eval-
uation on the widely used benchmark Defects4J (V1.2.0) shows that
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Grace significantly outperforms state-of-the-art coverage-based
fault localization: Grace localizes 195 bugs within Top-1 whereas
the best compared technique can at most localize 166 bugs within
Top-1. We further investigate the impact of each Grace component
and find that they all positively contribute to Grace. In addition, our
results also demonstrate that Grace has learnt essential features
from coverage, which are complementary to various information
used in existing learning-based fault localization. Finally, we eval-
uate Grace in the cross-project prediction scenario on extra 226
bugs from Defects4J (V2.0.0), and find that Grace consistently out-
performs state-of-the-art coverage-based techniques.
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1 INTRODUCTION

Fault localization (FL) [19, 34, 39, 54, 63, 70, 74, 78] aims to diagnose
buggy program entities (i.e., classes, methods, or statements) fully
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automatically and has been extensively studied to facilitate software
debugging process. More specifically, fault localization techniques
often leverage various static and/or dynamic program analysis infor-
mation to compute suspiciousness scores (i.e., probability of being
faulty) for each program entity. Program entities are then ranked in
the descending order of their suspiciousness scores, based on which
manual bug fixing or automated program repair [21, 26, 31, 66, 73]
can further be applied. To date, researchers have proposed to lever-
age various information to facilitate fault localization, such as cov-
erage [10, 33, 68], mutation [42, 50, 52, 78], predicate switching [80],
program repair [15, 46], bug report [37, 64], and code history [62].
Among them, coverage-based fault localization has been intensively
studied in the literature due to its effectiveness and lightweightness
for real-world systems [85].

Spectrum-based fault localization (SBFL) [9, 33, 68], one of the
most popular coverage-based FL techniques, identifies buggy pro-
gram entities by statistically analyzing coverage of failed and passed
tests. In particular, existing SBFL represents coverage by the num-
bers of failed and passed tests covering each program entity, and
regards the entities covered by more failed tests and less passed
tests as more suspicious. Although widely adopted for its simplicity
and efficiency, SBFL has limited effectiveness in practice [72], which
results from two major drawbacks in its design. (1) SBFL utilizes
coverage in an oversimplified way by abstracting it into the num-
ber of covering tests for each program entity, which may ignore
detailed coverage information. (2) SBFL considers coverage as the
only input information, which cannot always infer the actual causal
relationships between program entities and faulty behaviours, or
distinguish program entities with similar coverage.

To address the limitations in traditional spectrum-based fault
localization, recently learning-based fault localization [16, 62, 69,
81, 82] has been proposed, which leverages advanced machine/deep
learning techniques to (1) utilize coverage more exhaustively (i.e.,
learning-to-represent), or (2) integrate coverage with extra infor-
mation more intelligently (i.e., learning-to-combine). In particular,
learning-to-represent techniques [69, 71, 81, 82] summarize cov-
erage by a finer-grained representation (i.e., a boolean vector for
each test), based on which various learning approaches are further
applied to learn causal relationships between test coverage and test
outcome. However, such a representation can still be imprecise,
since it treats each program entity equally and analyzes each test
independently. In addition, these techniques still consider coverage
as the only input, which suffers from the same issue of single infor-
mation source as SBFL. Orthogonal to more exhaustive coverage
utilization, learning-to-combine fault localization [41, 42, 62, 85]
learns to integrate coverage with extra information by using suspi-
ciousness scores computed by existing SBFL and other information
as features. For example, FLUCCS [62] learns to rank program
entities based on suspiciousness scores of existing SBFL, code com-
plexity, and code history; similarly, the latest learning-to-combine
technique DeepFL [41], utilizes neural networks [49, 55] to combine
suspiciousness scores of spectrum-based FL and mutation-based
FL [50, 52, 78], code complexity, and text similarity. However, these
techniques directly adopt suspiciousness scores generated by ex-
isting SBFL, which inherently suffers from the same issues of the
compressed coverage representation in SBFL (i.e., summarizing cov-
erage by numbers of tests). Moreover, some information (e.g., bug

reports and code change history) used in these techniques cannot
be always available, while other information (e.g., mutation) can be
very time-consuming to collect [85], limiting their applications in
practice. In summary, although achieving substantial improvement,
existing learning-based fault localization techniques still fail to well
address the limitations in coverage-based fault localization.

In this work, we present a novel coverage-based fault localization
technique, Grace, which leverages Graph-based representation
learning to fully utilize coverage information. The intuition in
Grace is that coverage can be regarded as connective relationships
between tests and program entities, which can be inherently and
integrally represented by a graph structure: with tests and program
entities as nodes, while with coverage and code structures as edges.
Therefore, we first propose a novel graph-based representation to
reserve all detailed coverage information and fine-grained code
structures into one graph. Then we leverage Gated Graph Neural
Network (GGNN) [43] to learn helpful features from the graph-
based coverage representation, and to rank program entities in a
listwise way. Different from traditional machine learning and neural
networks which often preprocess graph structured data to a simpler
representation before learning [17, 25], GGNN can directly analyze
graph structured information with all topological relationships
reserved [27, 60], and has a prominent capability in graph analysis,
enabling more powerful fault localization.

We evaluate Grace on the widely used benchmark [35] Defects4J
(V1.2.0), which contains 395 real-world bugs from six open-source
Java projects. Our results show that Grace significantly outper-
forms state-of-the-art coverage-based fault localization techniques
including Ochiai [10], CNNFL [81], FLUCCS [62], and DeepFL [41].
For example, Grace localizes 195 bugs within Top-1 whereas the
compared techniques can at most localize 166 bugs within Top-1.
We further investigate the impact of each component and find that:
(1) the default listwise ranking is the most effective ranking loss
function; (2) the default fine-grained code structures with detailed
coverage information can also positively contribute to Grace; (3)
representing tests by oversimplified numbers as prior work sig-
nificantly degrades fault localization. In addition, Grace can fur-
ther boost state-of-the-art learning-to-combine fault localization,
DeepFL, by integrating suspiciousness scores of Grace as extra
features for DeepFL, localizing 225 bugs within Top-1, the best
learning-based fault localization results on Defects4J (V1.2.0) to
our knowledge. This indicates that Grace learns essential features
from coverage, which are complementary to various information
used in existing learning-based FL. Finally, we evaluate Grace
in the cross-project prediction scenario on extra 226 bugs from
the latest version of Defects4J benchmark, i.e., Defects4J (V2.0.0).
Our results show that Grace consistently outperforms state-the-
of-the-art coverage-based fault localization techniques on the new
benchmark, indicating general effectiveness of our approach.

This paper makes the following contributions:
• A novel graph-based coverage representation that in-
tegrally reserves all detailed coverage information by repre-
senting program entities, tests, their coverage relationships,
and fine-grained code structures into one unified graph. This
coverage representation is general and could be applied to
other problems using code coverage as inputs (e.g., regression
test prioritization and reduction).
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• A novel GGNN-based FL technique Grace that lever-
ages Gated Graph Neural Network (GGNN) to fully analyze
the proposed graph-based coverage representation and to
rank suspicious program entities in a listwise way.
• Anextensive evaluation on two versions ofwell-established
Defects4J benchmarks in bothwithin-project and cross-project
prediction scenarios. The results demonstrate the effective-
ness and general applicability of the proposed approach. Our
replication package is available at [8].

2 BACKGROUND AND RELATEDWORK

Since our work leverages graph-based representation learning to
boost coverage-based fault localization, in this section, we discuss
the closely related work in traditional coverage-based fault localiza-
tion (Section 2.1) and learning-based fault localization (Section 2.2).

2.1 Spectrum-Based Fault Localization

Spectrum-based fault localization (SBFL) [10, 11, 33, 56, 57, 68, 75],
one of the most popular coverage-based FL techniques, calculates
suspiciousness scores (probability of being faulty) of each program
entity based on the number of failed/passed tests that cover it. The
basic intuition in SBFL is that program entities covered by more
failed tests and less passed tests are more likely to be faulty. More
specifically, given a buggy program, the test suite (with at least one
failed test), and coverage information, SBFL first abstracts coverage
information into the number of tests covering each program entity
𝑒 , including the number of failed tests covering 𝑒 (𝑒𝑓 ) or not cov-
ering 𝑒 (𝑛𝑓 ), and the number of passed tests covering 𝑒 (𝑒𝑝 ) or not
covering 𝑒 (𝑛𝑝 ). Based on these numbers, SBFL further leverages
ranking formulae, e.g., Ochiai [10], DStar [68], and Tarantula [33],
to calculate suspiciousness scores for each program entity. For ex-
ample, Ochiai computes the suspiciousness score of the program
entity 𝑒 as 𝑂𝑐ℎ𝑖𝑎𝑖 (𝑒) = 𝑒𝑓 (𝑒𝑓 + 𝑒𝑝 )−

1
2 (𝑒𝑓 + 𝑛𝑓 )−

1
2 .

Although widely adopted for simplicity and efficiency, SBFL
has been shown to have limited effectiveness in practice [72]. In
particular, traditional SBFL suffers from two major drawbacks. (1)
SBFL utilizes coverage in an oversimplified way, which summarizes
coverage by the number of tests. Such a compressed representation
ignores detailed coverage information that may be essential for
fault localization. (2) SBFL considers coverage as the only input
information, which fails to distinguish program entities with similar
coverage. In addition, coverage alone cannot always help infer the
actual causal relationships between program entities and faulty
behaviours.

2.2 Learning-Based Fault Localization

To address the limitations in traditional spectrum-based fault local-
ization, learning-based fault localization [16, 41, 42, 62, 69, 71, 81,
81, 82, 85] has also been extensively studied to leverage advanced
machine/deep learning techniques to (1) utilize more detailed cover-
age information (i.e., learning-to-represent), or (2) integrate coverage
with extra information more intelligently (i.e., learning-to-combine).
In particular, learning-to-represent FL techniques learn suspicious-
ness scores from a finer-grained coverage representation [16, 82].
Different from existing SBFL summarizing coverage by the number
of failed/passed tests, these techniques represent coverage of each

test by a boolean vector that reserves its coverage relationships
with each program entity. Given a test and its coverage vector 𝒗,
the element 𝑣𝑖 shows whether the test covers the 𝑖th program entity.
Learning approaches are then applied on the vectors to learn causal
relationships between test coverage and test outcomes, based on
which suspiciousness of program entities can further be inferred.
Researchers have proposed to utilize various learning approaches,
such as back propagation neural network [71], radial basis func-
tion network [69], multi-layer perceptrons [82], and convolutional
neural network [81]. For example, CNNFL [81], the state-of-the-art
learning-to-represent technique, leverages convolutional neural
network [13] to facilitate coverage vector analysis.

Orthogonal to more exhaustive coverage utilization, learning-
to-combine FL techniques learn to combine strengths of coverage
and extra information by adopting suspiciousness scores computed
by existing SBFL and other information as features. For example,
FLUCCS [62] adopts the suspiciousness scores of existing SBFL,
code complexity, and code history as features; TraPT [42] lever-
ages suspiciousness scores of existing SBFL and also mutation-
based fault localization [50, 52, 78] as features; CombineFL [85]
adopts suspiciousness scores computed by existing spectrum-based,
mutation-based, slicing-based [12, 58], and information-retrieval-
based fault localization [83] as features. Similarly, DeepFL [41], the
state-of-the-art learning-to-combine fault localization technique,
utilizes neural networks (e.g., recurrent neural network [49] and
multi-layer perceptron [55]) to combine features of four dimensions,
including suspiciousness scores of spectrum-based and mutation-
based FL, code complexity, and text similarity.

Although achieving substantial improvement, existing learning-
based FL techniques still fail to eliminate the limitations in tradi-
tional SBFL completely. For learning-to-represent techniques, rep-
resenting coverage of each test as a vector can be imprecise, which
treats all program entities equally and analyzes each test indepen-
dently. Moreover, these techniques also suffer from the same issue
of single information source as SBFL, since they consider coverage
as the only input. For learning-to-combine techniques, adopting
suspiciousness scores computed by existing SBFL inherently suffers
from the same issues of the compressed coverage representation in
SBFL (i.e., representing coverage as numbers of tests). Moreover,
some information (e.g., bug reports and code change history) used
in these techniques cannot be always available, while other infor-
mation (e.g., mutation) can be rather time-consuming to collect [85],
further limiting their applications in practice.

Different from existing coverage-based techniques, this work
makes the first attempt to represent detailed coverage by graph
structures and utilize Gated Graph Neural Network to directly
cope with the proposed graph-based representation. In addition, we
integrate coverage with lightweight information (i.e., fine-grained
code structures) to boost coverage-based fault localization for the
first time.

3 MOTIVATING EXAMPLE

To better illustrate the limitations in existing coverage-based fault
localization, we further present a motivating example in this sec-
tion. As shown in Table 1, we use a real bug Lang-47 from the
widely-used benchmark Defects4J (V1.2.0) [35]. Lang-47 denotes
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Table 1: Motivating example: Lang-47

ID Method signature

Coverage

SBFL Rank

𝑓 𝑡1 𝑓 𝑡2 𝑝𝑡1 𝑝𝑡2 𝑝𝑡3 𝑝𝑡4 𝑝𝑡5 𝑝𝑡6
𝑚1 public String getNullText() ✓ ✓ ✓ ✓ ✓ 0.63 1
𝑚2 public StrBuilder appendFixedWidthPadLeft(Object, int, char) ✓ ✓ ✓ 0.41 2
𝑚3 public StrBuilder appendFixedWidthPadRight(Object, int, char) ✓ ✓ ✓ ✓ 0.35 3
𝑚4 public StrBuilder() ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.12 5
𝑚5 public StrBuilder(int) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.12 5
𝑚6 public StrBuilder ensureCapacity(int) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.10 6

the 47th buggy version of Apache Commons Lang [1] in Defects4J
(V1.2.0). Column “ID” and Column “Method signiture” present
the unique method identifier and signature, Column “Coverage”
presents method-level coverage of both failed and passed tests, Col-
umn “SBFL” presents the suspiciousness scores of each method
computed by Ochiai [10] (i.e., one of the most popular SBFL for-
mula) , and Column “Rank” presents the position of each method in
the SBFL ranked list. This bug involves multiple buggy methods, i.e.,
appendFixedWidthPadRight and appendFixedWidthPadLeft (high-
lighted in grey) and triggers two test failures, i.e., 𝑓 𝑡1 and 𝑓 𝑡2. Fig-
ure 1 presents code snippets of the correct method 𝑚1 and the
buggy method𝑚2. For space limits, we present only methods and
tests that are essential for fault localization.

public String getNullText(){

return nullText;}

public StrBuilder appendFixedWidthPadLeft(Object, int, char) {

if (width > 0) {

ensureCapacity(size + width);

String str = (obj == null ? getNullText() : obj.toString());

int strLen = str.length(); // bug. . .

Figure 1: Code snippets of𝑚1 and𝑚2

Unfortunately, as shown by the table, the traditional SBFL fails
to localize neither buggy method within Top-1, since it always con-
siders the method covered by more failed test and less passed tests
as more suspicious. For example, the correct method𝑚1 and the
buggy method𝑚3 are both covered by three passed tests, but𝑚1
is covered by more failed tests than𝑚3. Therefore, SBFL is misled
by its compressed coverage representation and inflexible ranking
heuristics to make a wrong judgment. In fact, besides Ochiai, all the
existing SBFL formula [42] share a same ranking intuition and thus
all fail to rank the buggy method𝑚3 before the correct method𝑚1.
Therefore, the learning-to-combine FL that directly adopts suspi-
ciousness scores computed by existing SBFL formula would also
suffer from the same issue as SBFL. For example, in our experiment
(Section 6), DeepFL [41], the state-of-the-art learning-to-combine
FL technique, fails to rank the buggy method within Top-1. As for
learning-to-represent fault localization that represents coverage as
vectors, the failed test 𝑓 𝑡1 and the passed test 𝑝𝑡1 have the same
coverage distribution and thus have identical coverage vectors.
Therefore, it is challenging for the model to learn causal relation-
ships between test coverage and test outcomes, which finally results
in an incorrect ranked list. For example, in our experiment (Sec-
tion 6), the representative learning-to-represent FL technique (i.e.,
CNNFL [81]) fails to identify the buggy methods neither.

Based on the example, several observations can be made at this
point. (1) Coverage relationships among all program entities and all

tests should be represented and analyzed in an integral way. Existing
coverage-based FL compresses coverage as numbers or vectors,
which actually regards program entities or tests as equivalent in-
dividual instances and ignores the diversity embedded in their
topological coverage relationships. For example, some infrequent
coverage relationships (e.g., tests covering few program entities
or program entities covered by few tests) may be more helpful
by reducing the search space of fault localization. In the example,
the passed tests 𝑝𝑡1 and 𝑝𝑡2 cover almost all the methods (i.e., 5
out of 6), which can provide very limited hints to identify buggy
methods compared the other passed tests covering less methods
(e.g., 𝑝𝑡3 covering 3 methods). (2) Code structures can be helpful
information for coverage-based fault localization. Although both the
correct method𝑚1 and the buggy method𝑚2 are covered by the
failed test 𝑓 𝑡1, (i.e., all statements listed in Figure 1 are covered by
𝑓 𝑡1), coverage on statements of different types may be not equally
important for fault localization. For example, the correct method
𝑚1 is simply structured with only one return statement, which can
be covered by any test executing𝑚1; whereas, the buggy method
𝑚2 has nested structures with if statements, which are more chal-
lenging to be covered for a test executing𝑚2 and thus may provide
richer features on program behaviours. In addition, code structures
(e.g., abstract syntax structures) are lightweight information and
always available with low collection costs compared to various
other information (e.g., mutation or bug reports) used in existing
learning-based FL.

4 APPROACH

Inspired by observations above, in this work, we present a novel
coverage-based fault localization technique, Grace, which fully
exploits coverage information via graph-based representation learn-
ing. More specifically, given a buggy program, its test suite, and
coverage information, Grace identifies buggy program entities by
two phases. First, to reserve detailed coverage information, Grace
novelly represents all program entities, tests, their coverage relation-
ships, and fine-grained code structures into one graph (Section 4.1);
then, Grace leverages Gated Graph Neural Network [43] to learn
key features from the proposed graph-based representation and to
rank suspicious program entities in a listwise way (Section 4.2).

4.1 Graph-Based Coverage Representation

In this section, we formally define the proposed graph-based cov-
erage representation, which regards program entities and tests as
nodes, and coverage relationships and code structures as edges in
one graph, i.e., unified coverage graph. For better illustration, we
first describe three key sub-components in the graph, including: (1)
code representation showing how to represent code structures with
code nodes and code edges, i.e., Definition 4.1; (2) test representation
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showing how to represent tests with test nodes, i.e., Definition 4.2;
and (3) coverage representation showing how to represent coverage
relationships as coverage edges in the graph, i.e., Definition 4.3.

Definition 4.1. Code representation. Given a method𝑚 in
the buggy program and its abstract syntax tree (AST) 1, its statement-
level abstract syntax tree G𝑚

ast is a subgraph of its original AST, con-
taining only statement- and block-level nodes and their corresponding
edges (i.e., the token-level nodes are excluded). G𝑚

ast = (V𝑚
ast, E𝑚ast),

where V𝑚
ast and E𝑚ast denote code nodes and code edges. In particular,

for each code node 𝑣𝑐 ∈ V𝑚
ast, attr(𝑣𝑐 ) denotes a set of its attributes.

𝑣𝑚root denotes the root code node in G𝑚
ast.

Instead of adopting a complete AST, we use statement-level AST
to represent code structures. In fact, statement- and token-level
representations are equally informative in terms of the widely state-
ment coverage information, but the latter significantly enlarges
scales (i.e., the number of nodes and edges) and substantially in-
creases unnecessary computation costs. As for node attributes,
we consider AST node type and test correlation for code nodes. In
particular, AST node type (e.g., if statement and return statement)
effectively distills the syntactic type of each node, which can be
helpful for fault localization. Test correlation represents the textual
similarity between code nodes and failed tests, which has been
inspired by information retrieval-based fault localization [83] that
identifies buggy code based on the textual similarity between source
files and bug reports. These two attributes aim to reserve syntactic
and semantic features of the buggy program respectively, and we
would further describe their detailed construction in Section 4.2.1.

Definition 4.2. Test representation. Given the test suite T ,
test nodes VT refer to a set of all tests in T . In particular, for each
test node 𝑣𝑡 ∈ VT , its node attribute attr(𝑣𝑡 ) is its test outcome, i.e.,
attr(𝑣𝑡 ) ∈ {✗,✓}.

We represent each test as an individual test node and distinguish
failed and passed tests by using their outcomes as node attributes,
i.e., ✗ or ✓.

Definition 4.3. Coverage representation. Given a method𝑚
in the buggy program and the test suite T , statement-level coverage
C[𝑚, 𝑡] denotes a set of statements in𝑚 that are covered by the test
𝑡 . We represent coverage as a set of edges E𝑚cov between code nodes
V𝑚
ast and test nodesVT , i.e., E𝑚cov = {< 𝑣𝑐 , 𝑣𝑡 > |𝑐 ∈ C[𝑚, 𝑡], 𝑡 ∈ T },

where 𝑣𝑐 denotes the corresponding code node of the statement 𝑐 in
G𝑚
ast and 𝑣𝑡 denotes the corresponding test node of the test 𝑡 in VT .

We represent coverage relationships as coverage edges between
code nodes and test nodes. In the motivating example, Figure 2
illustrates code, test, and coverage representations for the method
𝑚2. For clear illustration, we have not included all test nodes in
the figure. By now, we have presented representations within each
method. We further merge representations of all methods in the
buggy program into one graph, i.e., unified coverage graph, as shown
in Definition 4.4. The unified coverage graph integrally represents
coverage information of the whole program, including nodes of
two categories (i.e., code nodes and test nodes) and edges of two
categories (i.e., code edges and coverage edges). Figure 3 illustrates

1In this work, we treat AST as an unweighted and undirected graph.

the final representation for the entire program in the motivating
example.

Definition 4.4. Unified coverage graph. Given the method
set M in the buggy program, the test suite T , and statement-level
coverage C, the unified coverage graph G of the buggy program
is a graph including code, test, and coverage representations of all
methods inM. G = (V, E), where nodesV = {( ⋃

𝑚𝑖 ∈M
V𝑚𝑖

ast )
⋃VT }

and edges E = {( ⋃
𝑚𝑖 ∈M

E𝑚𝑖

ast )
⋃( ⋃

𝑚𝑖 ∈M
E𝑚𝑖
cov)}.

In fact, unified coverage graph is a general representation and
could be applied to not only fault localization but also other prob-
lems that mainly use code, test, and coverage as inputs, such as
coverage-based regression test prioritization [20, 44, 45, 47, 48, 59]
and reduction [51, 76, 77]. In addition, provided with extra code/test
related information, the unified coverage graph can be further ex-
tended by representing new information as additional node at-
tributes, nodes, or edges based on the basic unified coverage graph.

v1type: method_declarion
correlation: 0.25

v2type: if_stmt
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4.2 Proposed Model

4.2.1 Inputs. Given a buggy program, the test suite with at least
one failed test, and the statement-level coverage information, we
construct the unified coverage graph G as follows. (1) We first
parse the buggy program by Javalang toolkit [5] to obtain AST rep-
resentations for each method, based on which we further construct
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its statement-level AST G𝑚
ast by removing token-level nodes and

relevant edges. (2) We further connect G𝑚
ast of each method into

one graph by including test nodes and coverage edges according to
coverage information. (3) Finally, we annotate each node with its
attributes in the graph. As mentioned in Section 4.1, we annotate
test nodes with test outcomes, and annotate code nodes with AST
node type and test correlation. In particular, for AST node type, we
adopt the node type generated by Javalang during AST parsing,
including 13 types in total; for test correlation, currently we con-
sider this attribute only for each root code node by calculating the
textual similarity between its belonging method name and failed
test names, since prior fault localization work has demonstrated the
effectiveness of textual similarities between failed tests and buggy
methods [41]. Intuitively, a method whose name has a higher tex-
tual similarity with failed test names is more likely to be faulty.
Therefore, following prior work [84], we compute the textual simi-
larity between two words as Equation 1, where𝑤𝑚 and𝑤𝑡 denote
the method name and the failed test name, and len(𝑤𝑚 ∩𝑤𝑡 ) and
len(𝑤𝑡 ) denote the number of their common tokens and the num-
ber of tokens in the failed test name after they are tokenized by
CamelCase. In particular, we adopt the maximum value when there
are more than one failed tests.

cor(𝑤𝑚,𝑤𝑡 ) = len(𝑤𝑚 ∩𝑤𝑡 )/len(𝑤𝑡 ) (1)

To further represent the constructed unified coverage graph in a
suitable format for the graph neural network, we use an adjacency
matrix 𝐴 to represent the graph structure, and use an attribute se-
quence 𝑆 to represent all node attributes in the graph. In particular,
given the unified coverage graph G = (V, E), the element 𝐴𝑣𝑖 ,𝑣𝑗 in
the adjacency matrix 𝐴 ∈ {0, 1} |V |×|V | , represents whether node
𝑣𝑖 connects with node 𝑣 𝑗 . To avoid gradient vanishing/exploding
issues caused by cumulative degrees in the matrix, we further nor-
malize𝐴 as𝐴 = 𝐷− 1

2𝐴𝐷− 1
2 [65], where𝐷 denotes a diagonal matrix,

i.e., 𝐷𝑣𝑖 ,𝑣𝑖 = de(𝑖)−
1
2 , and de(𝑣𝑖 ) is the cumulative degrees of node

𝑣𝑖 . In the attribute sequence 𝑆 , 𝑆𝑣𝑖 denotes the attributes of node
𝑣𝑖 . In particular, for the test node and non-root code node that
have only one attribute, it includes one token, which can be any
of {✗,✓, type}; and for the root code node that has two attributes,
it includes one token (i.e., AST node type) and one float value (i.e.,
test correlation), which can be a two-tuple (type, cor).

By far, the unified coverage graph G has been represented by
the systematic adjacency matrix 𝐴 and the attribute sequence 𝑆 ,
which are further fed to the neural network as its inputs.

4.2.2 Gated Graph Neural Network. Traditional machine learning
and neural networks often handle graph structured data with a
preprocessing phase to transform the graph to a simpler represen-
tation, during which important information may be lost [17, 25];
whereas Graph Neural Network (GNN) [27, 60], which can directly
analyze graph structured information with all topological depen-
dency reserved [27, 60], has gained increasing popularity in recent
years. Gated Graph Neural Network (GGNN) [43, 61] is a variant
of GNN that further includes gated units to preserve long-term
dependencies, such as Gated Recurrent Unit (GRU) [23] and Long
Short Term Memory (LSTM) [30]. Therefore, in Grace, we design
a GGNN model to learn key features in the unified coverage graph
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Figure 4: Architecture of Grace

and to rank suspicious code nodes in the graph. Figure 4 shows the
architecture of our model. We then describe key components as
follows.

Embedding layer. The word embedding layer first encodes the
attribute sequence 𝑆 into an attribute matrix 𝑋 ∈ R |V |×𝑑 , where
𝑑 denotes the embedding size. As mentioned above, the test node
and non-root code node have only one attribute token, which can
be directly embedded into a 𝑑-dimension vector. For the root code
node with two attributes, we first embed AST node type (i.e., a
token) into a vector of 𝑑 − 1 dimensions, and then concatenate it
with test correlation (i.e., a float value) into a 𝑑-dimension vector.

GGNN layer. We apply the GGNN layer by five iterations. In
the 𝑡th iteration, for each node, we update its current states by
incorporating information from its adjacent nodes and from the
previous iterations. In Grace, we implement the gated mechanism
in GGNN by leveraging input gates and forget gates in LSTM to
control the propagation of cell states. In particular, 𝒄 (𝑡 )𝑣 denotes the
cell state for node 𝑣 in the 𝑡th iteration, and initially 𝒄 (1)𝑣 = 𝑋 𝑣:.
𝒂 (𝑡 )𝑣 propagates cell states of all its adjacent nodes in the 𝑡 − 1th
iteration as shown in Equation 2.

𝒂 (𝑡 )𝑣 = 𝐴𝑣: [𝒄 (𝑡−1)⊤1 ; ... ; 𝒄 (𝑡−1)⊤|V | ] (2)

In particular, forget gates decide what information to be excluded
from cell states, i.e., Equation 3; input gates decide what new infor-
mation from current input (i.e., 𝒂 (𝑡 )𝑣 ) to be included into cell states,
i.e., Equation 4. Based on new and forgetting information, cell states
can be updated as Equation 5, where ⊙ denotes Hadamard product.

𝒇 (𝑡 )
𝑣 = sigmoid(𝑊𝑓 𝒂

(𝑡 )
𝑣 + 𝒃𝑓 ) (3)

𝒊 (𝑡 )𝑣 = sigmoid(𝑊𝑖𝒂
(𝑡 )
𝑣 + 𝒃𝑖 )

𝒄 (𝑡 )𝑣 = tanh(𝑊𝑔𝒂
(𝑡 )
𝑣 + 𝒃𝑔)

(4)

𝒄 (𝑡 )𝑣 = 𝒇 (𝑡 )
𝑣 ⊙ 𝒄 (𝑡−1)𝑣 + 𝒊 (𝑡 )𝑣 ⊙ 𝒄 (𝑡 )𝑣 (5)
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To avoid the problem of vanishing gradients, we further leverage
residual connection [29] and layer normalization [14] between each
of the two sub-layers.

4.2.3 Inference. The outputs after the computation of all GGNN
iterations, are further fed to a linear transformation layer followed
by a softmax activation. In particular, for node 𝑣𝑖 , 𝒛𝑖 denotes its
output of the last iteration in GGNN layer, which is further linearly
transformed into a real number 𝑦′

𝑖
as Equation 6, where𝑊 ∈ R𝑑×1

and 𝒃 ∈ R. In Grace, nodes are ranked in a listwise way, and thus
we leverage softmax function to normalize the outputs of all nodes
as Equation 7, where 𝑝 (𝑣𝑖 ) denotes the probability of node 𝑣𝑖 being
faulty. Since Grace targets at method-level fault localization, we
consider only root code nodes in the inference phase, i.e., 𝑛 is the
number of root code nodes.

𝑦′𝑖 =𝑊 𝒛𝑖 + 𝑏 (6)

𝑝 (𝑣𝑖 ) =
exp {𝑦′

𝑖
}∑𝑛

𝑗=1 exp {𝑦′𝑗 }
(7)

4.2.4 Ranking Loss Function. Listwise, pairwise, and pointwise are
three common loss functions that have beenwidely used in learning-
to-rank techniques [22, 38]. Given a ranked list, listwise function
evaluates the entire list based on the order of all elements. It in-
herently agrees with the intuition of Grace that represents and
analyzes all elements and their relationships in an integral way.
Therefore, Grace adopts listwise ranking as its default loss function,
which can be computed as Equation 8. In particular, 𝑔(𝑣𝑖 ) denotes
the ground truth label for node 𝑣𝑖 , and 𝑝 (𝑣𝑖 ) denotes its inference
results.

L𝑙𝑖𝑠𝑡 = −
𝑛∑
𝑖=1

𝑔(𝑣𝑖 ) log(𝑝 (𝑣𝑖 )) (8)

In principle, Grace can also leverage the other two functions (i.e.,
pairwise and pointwise) for loss calculation, which can be computed
as Equation 9. Pairwise function compares buggy nodes 𝑣− and
correct nodes 𝑣+ in pair while pointwise function computes loss
for each node 𝑣𝑖 as a binary classification problem. Different from
listwise function, sigmoid activation function is used in the last
layer instead of softmax, i.e., 𝑝 (𝑣𝑖 ) = sigmoid(𝑦′

𝑖
). We would further

investigate the impacts of loss functions in the detailed experiments.

L𝑝𝑎𝑖𝑟 =
∑
𝑖∈𝑣−

∑
𝑗 ∈𝑣+

max{𝛼 − (𝑝 (𝑣𝑖 ) − 𝑝 (𝑣 𝑗 )), 0}

L𝑝𝑜𝑖𝑛𝑡 = − (𝑔(𝑣𝑖 ) log(𝑝 (𝑣𝑖 )) + (1 − 𝑔(𝑣𝑖 )) log(1 − 𝑝 (𝑣𝑖 )))
(9)

5 EXPERIMENT DESIGN

5.1 Research Question

• RQ1: Effectiveness of Grace. How does Grace perform
compared to state-of-the-art coverage-based fault localiza-
tion techniques?

• RQ2: Impact analysis of Grace components.

– RQ2a: Impact of ranking loss function. How does the
ranking loss function impact the effectiveness of Grace?

– RQ2b: Impact of code representation. How does the
code representation impact the effectiveness of Grace?

– RQ2c: Impact of test representation. How does the
test representation impact the effectiveness of Grace?

• RQ3: Integrating with other information. Can Grace
further boost state-of-the-art learning-based fault localiza-
tion techniques that use various information?

• RQ4: Cross-project effectiveness on Defects4J (V2.0.0).

How does Grace perform in the cross-project prediction
scenario on the new benchmark Defects4J (V2.0.0)?

Table 2: Benchmark information

ID Name #Bug #Test LoC

Lang Apache commons-lang 65 2,245 22K
Math Apache commons-math 106 3,602 85K
Time Joda-Time 27 4,130 28K
Chart JFreeChart 26 2,205 96K
Closure Google Closure compiler 133 7,927 90K
Mockito Mockito framework 38 1,366 23K

Defects4J (V1.2.0) 395 21,475 344K

Cli Commons-cli 39 361 4K
Codec Commons-codec 18 850 10K
Collections Commons-collections 4 1,286 65K
Compress Commons-compress 47 73 12K
Csv Commons-csv 16 257 2K
Gson Gson 18 NA NA
JacksonDatabind Jackson-databind 112 NA NA
JacksonCore Jackson-core 26 692 31K
JacksonXml Jackson-dataformat-xml 6 160 6K
Jsoup Jsoup 48 530 14K
JxPath Commons-jxpath 22 401 21K

Defects4J (V2.0.0) 226 4,610 165K

5.2 Benchmark

We perform our experiments on the widely used benchmark De-
fects4J [35], which contains hundreds of reproducible real bugs
from a wide range of projects. The benchmark currently has two
versions: an original version Defects4J (V1.2.0) and a recently re-
leased version Defects4J (V2.0.0) [28] with extra bugs. To our knowl-
edge, existing fault localization work uses only the original version
Defects4J (V1.2.0) for evaluation. In our study, we evaluate our
approach and state-of-the-art fault localization techniques not only
on the original version (i.e., from RQ1 to RQ3) but also on the latest
version (i.e., RQ4) for the first time.

Table 2 shows detailed information of the benchmark. Columns
“ID” and “Name” present the short name and full name of each
subject; Column “#Bugs” presents the number of bugs in each sub-
ject; Columns “Loc” and “#Test” present the number of lines and
tests in the HEAD version of each subject. Note that the first 45
bugs in Jsoup and all bugs in Gson/JacksonCore (highlighted in
gray) fail to be reproduced. Thus we exclude subjects Gson and
JacksonCore and use the remaining 48 bugs for Jsoup. In total, our
experiments are conducted on all 395 bugs from Defects4J (V1.2.0)
and 226 additional bugs from Defects4J (V2.0.0).
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5.3 Independent Variables

5.3.1 Compared techniques. In RQ1 and RQ4, we compare Grace
with the following state-of-the-art coverage-based fault localiza-
tion techniques. (1) Spectrum-based fault localization. We compare
Grace with all 34 SBFL formulae studied in prior work [41] and
present the best one (i.e., Ochiai [10]) in our results. (2) Learning-
based fault localization.Wealso consider three representative learning-
based fault localization for comparison, including the state-of-the-
art learning-to-represent fault localization CNNFL [81], the repre-
sentative learning-to-combine fault localization FLUCCS [62] based
on machine learning, and the representative learning-to-combine
fault localization DeepFL [41] based on deep learning. For CNNFL,
since its source code is not available, we reimplement it strictly
following the original paper [62]. For FLUCCS and DeepFL, we di-
rectly take their corresponding implementations from the DeepFL
GitHub webpage [2]. Note that in this study we focus on coverage-
based fault localization that includes only source code, tests, and
coverage as inputs, while the original DeepFL technique includes
mutation-based fault localization information which can be very
time-consuming to collect (i.e., hours of online collection time per
bug [85]). Therefore for a fair comparison with Grace, we modify
the original DeepFL implementation to exclude mutation-related
features and keep the remaining three dimensions (i.e., spectrum-
based fault localization information, code complexity, and text sim-
ilarities) that can be derived from source code and coverage. We
denote such a variant as DeepFL𝑐𝑜𝑣 to differentiate with the original
DeepFL (which additionally includes mutation-related features).

In RQ2, we consider the following variants of Grace to analyze
impacts of each component. (1) Ranking loss function. we consider
Grace with different ranking loss functions as mentioned in Sec-
tion 4.2.4, by replacing the default loss function (i.e., listwise) with
pairwise and pointwise loss respectively. For distinction, we denote
these two variants as Grace𝑝𝑎𝑖𝑟 and Grace𝑝𝑜𝑖𝑛𝑡 . Comparing the
default Grace with these variants can show the impact from rank-
ing loss functions. (2) Code representation.We simplify current code
representation (i.e., Definition 4.1) to investigate its contribution
to Grace. More specifically, instead of using code nodes, node at-
tributes, and code edges to reserve fine-grained code structures, we
use only one node with the number of containing statements to
represent each method; in addition, coverage is adjusted to be edges
between test nodes and method nodes. We denoted the variant with
such a coarse-grained code representation as Grace𝑐𝑜𝑑𝑒− . (3) Test
representation. We simplify current test representation (i.e., Defini-
tion 4.2) to investigate its contribution to Grace. In particular, we
remove test nodes and directly adopt the number of failed/passed
tests that cover each code node as its extra node attributes. We
denoted the variant with such a coarse-grained test representation
as Grace𝑡𝑒𝑠𝑡− .

In RQ3, to investigate whether Grace has learned novel fea-
tures that are complementary to other information used in existing
fault localization techniques, we further integrate Grace with the
state-of-the-art learning-to-combine technique, DeepFL [41]. In
particular, we extend the original DeepFL with a fifth dimension
of features, which are suspiciousness scores computed by Grace.
We denote such a variant of DeepFL as DeepFL𝐺𝑟𝑎𝑐𝑒 . Comparing

DeepFL𝐺𝑟𝑎𝑐𝑒 with DeepFL, we can investigate the complementar-
ity between Grace and the other four feature dimensions used in
DeepFL (i.e., suspiciousness scores of spectrum-based and mutation-
based fault localization, code complexity, and textual similarity).

5.3.2 Experimental configurations. From RQ1 to RQ3, we perform
within-project prediction by leave-one-out cross validation on bugs
for each project. Following previous work [41], we split buggy ver-
sions in each project into two groups: one buggy version as testing
data for prediction and all the remaining buggy versions in the
same project as training data. Besides within-project prediction,
in RQ4, we further perform cross-project prediction on the addi-
tional benchmark Defects4J (V2.0.0) by two-fold cross-validation.
In particular, we use buggy versions of all six projects in Defects4J
(V1.2.0) as training data, and randomly separate all buggy versions
in Defects4J (V2.0.0) into two folds, which serve as testing set and
validation set in turn.

5.4 Measurement

Following recent fault localization work [15, 40–42, 46, 62, 79], in
this work, we perform fault localization at method level, because
recent studies have shown that class-level fault localization is too
coarse-grained to aid debugging while statement level might be too
fine-grained to convey useful context information [36, 53]. We use
the widely used measurements as follows [15, 40–42, 46].

Recall at Top-N. Top-N computes the number of buggy ver-
sions that have at least one buggy element localized within Top-N
positions in the ranked list. Previous studies [53] have shown that
developers inspect only a small number of buggy elements within
top positions in the ranked list, e.g., 73.58% developers inspect only
the Top-5 elements in the given list [36]. Therefore, following prior
work [15, 41, 42, 46], we adopt Top-N (N=1,3,5).

Mean First Rank (MFR). For each buggy version, the first rank
is the ranking of the first faulty element in the list. For each project,
MFR calculates the mean of first ranks for all buggy versions.

Mean Average Rank (MAR). For each buggy version, the av-
erage rank is the average ranking of all faulty elements in the list.
For each project, MAR calculates the mean of average ranks for all
buggy versions.

Following previous work [15, 41, 42, 46], we use the worst rank-
ing for the tied elements that have the same suspiciousness scores.
For example, if a correct element and a buggy element are tied with
each other and both ranked at 𝑘th position in the ranked list, we
consider both of them are ranked at 𝑘 + 1th.

5.5 Implementation

Data collection. We use ASM [18] and Java Agent [4] to instrument
bytecode for coverage collection. For Grace, we parse source code
via Javalang toolkit [5] to construct AST. In line with prior work [41,
62], we use Jhawk [6], ASM [18], and Indri [3] to collect code
complexity and textual similarity required by compared techniques
DeepFL and FLUCCS.

Time costs. Table 3 presents the time costs for Grace on the
HEAD version of each project. In particular, Column “#Vertexes”
and Column “#Edges” present the number of vertexes and edges
in the constructed unified coverage graph; Column “Construct”
presents the graph construction time; Column “Train” and Column
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“Test” present the training and testing time for Grace. To restrain
the scale of the graph, we consider only suspicious methods (i.e.,
covered by at least one failed test) and tests covering at least one
suspicious method during graph construction. Based on the table,
we can find that graph construction is highly efficient, i.e., only one
minute for the largest project Closure. In addition, training time
varies from seconds to one hour (i.e., 73 minutes for the largest
project Closure), which is acceptable since training process is of-
ten performed offline. After the training model is ready, Grace
then takes seconds to perform testing process. Overall, Grace is a
lightweight learning-based technique in practice.

Hyperparameters.We globally use learning rate of 0.01 and em-
bedding size of 32 for all projects. For the sake of efficiency, we
maximize batch size based on the scale of graphs to make full use of
GPU memory. In particular, we use batch size of 60 for all projects
except Closure (i.e., batch size of 20), since its scale of graph is sig-
nificant larger than other projects as shown in Table 3. Following
prior work [41], we use a default training epoch (i.e., 10) when
performing within-project prediction. The experimental results
for configurations can be found at our GitHub website [8] due to
space limit. Furthermore, all experiments are conducted with fixed
random seed to avoid randomness and guarantee reproducibility.

Environment. All experiments are conducted on a Dell worksta-
tion with 300G RAM, Intel Xeon CPU E5-2680 v4 @ 2.40GHz, and
eight 24G GPUs of GeForce RTX 3090, running Ubuntu 16.04.6 LTS.
We build our experiments on PyTorch V1.7.1 [7].

Table 3: Efficiency of Grace

Subject

Graph representation Model

# Vertexes # Edges Construct (s) Train (s) Test (s)
Chart 1,715 232,222 13.13 10.64 6.48
Time 3,785 276,174 8.65 28.76 21.82
Lang 54 474 6.51 2.22 0.34
Math 3,316 55,650 11.51 140.91 11.46
Mockito 1,946 631,560 8.03 64.44 48.50
Closure 6,246 4,161,080 62.81 4,384.53 79.88

5.6 Threats to Validity

Threats to internal validity lie in technique implementations and
experimental scripts. To mitigate the threat, we manually check our
code and build them on state-of-the-art frameworks, e.g., ASM [18]
and PyTorch [7]. We also directly use the original implementations
from prior work [41]. Threats to external validity lie in benchmarks
used in our study. To reduce this threat, we perform our experi-
ments on the widely-used benchmark with hundreds of real-world
bugs. Furthermore, to our knowledge, we alsomake the first attempt
to evaluate fault localization techniques on the latest version of the
benchmark, i.e., Defects4J (V2.0.0), which contains additional over
two hundreds real bugs. In the future, we plan to further evaluate
our approach on extra bugs [32]. Threats to construct validity lie in
measurements used in our study. To reduce this threat, we use mul-
tiple measurements which are all widely used in fault localization
studies [40–42, 46]. In addition, we also perform our experiments
under various settings (e.g., within/cross project prediction and
two-fold/leave-one-out cross validation) to strengthen generality
of the study.

6 RESULT ANALYSIS

6.1 RQ1: Effectiveness of Grace

Table 4 presents fault localization results of Grace and state-of-
the-art coverage-based FL techniques on Defects4J (V1.2.0). The
first two columns present corresponding subjects and techniques,
and the remaining columns present results in terms of Top-1, Top-3,
Top-5, MFR and MAR. From the table, we can observe that Grace
substantially outperforms all the compared techniques in all stud-
ied metrics. Overall, Grace successfully localizes 195 bugs within
Top-1, 29 more than DeepFL𝑐𝑜𝑣 , 35 more than FLUCCS, 140 more
than CNNFL, and 115 more than Ochiai. In addition, MFR and MFR
are also remarkably improved, i.e., 41.50% improvement in MFR and
37.78% improvement in MAR compared to the best compared tech-
nique DeepFL𝑐𝑜𝑣 , indicating that Grace is effective for all buggy
elements. Moreover, Grace consistently outperforms other tech-
niques on each project. For example, the improvement of Grace
is prominent even on the largest project Closure, i.e., with 55.19%
improvement in MFR and 55.29% improvement in MAR compared
to the best compared technique DeepFL𝑐𝑜𝑣 on Closure. On the con-
trary, we notice that CNNFL performs extremely poorly on the
Closure project, i.e., no bug is localized within Top-1. Such a poor
performance actually results from its coverage representation that
uses a boolean vector to represent the coverage of each test. The
boolean vectors can be extremely sparse (i.e., most elements are
zero), especially in large projects where a test can cover only a
small ratio of program entities. Therefore, based on such a coverage
representation, almost all the suspiciousness scores predicted by
CNNFL are values close to zero. However, Grace would not suffer
from such an issue in large projects, since we leverage graph neutral
network on a graph structured representation, which focuses on
only adjacent nodes rather than all nodes during learning process.
This observation further demonstrates the advantage of our cov-
erage representation and learning model on projects of different
scales.

To further confirm the observations above, we performWilcoxon
signed-rank test [67] with Bonferroni corrections [24] to investigate
statistical significance between Grace and other state-of-the-art
techniques. In particular, we compare the rankings of buggy ele-
ments generated by Grace and each compared technique in pair at
the significance level of 0.05. The results suggest that the improve-
ments in terms of MAR/MFR achieved by Grace are all statistically
significant (i.e., 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05).

6.2 RQ2: Impact Analysis

In this RQ, we further analyze the impact of each component in
Grace. Figure 5 compares MFR and MAR metrics between variants
and the default Grace (i.e., with listwise loss, fine-grained code
and test representations). In particular, Figure 5(a) presents results
of default Grace and variants of different ranking loss functions,
i.e., pairwise and pointwise; Figure 5(b) presents results of default
Grace and the variant of a coarse-grained code representation;
Figure 5(c) presents results of default Grace and the variant of a
coarse-grained test representation. Note that the results for the
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Table 4: Comparison with state-of-the-art

Subject Techniques Top-1 Top-3 Top-5 MFR MAR

Chart

Ochiai 6 14 15 9.00 9.51
CNNFL 7 13 14 38.76 39.32
FLUCCS 15 19 16 8.08 8.85
DeepFL𝑐𝑜𝑣 11 19 20 5.52 5.83
Grace 16 20 22 3.84 4.49

Lang

Ochiai 24 44 50 4.63 5.01
CNNFL 22 46 53 4.03 4.25
FLUCCS 40 53 55 3.40 3.63
DeepFL𝑐𝑜𝑣 43 54 56 3.08 3.28
Grace 46 54 55 2.34 2.70

Math

Ochiai 23 52 62 9.73 11.72
CNNFL 19 47 60 10.19 11.48
FLUCCS 48 77 83 4.64 5.66
DeepFL𝑐𝑜𝑣 52 81 91 3.97 5.00
Grace 60 81 91 3.46 4.14

Time

Ochiai 6 11 13 15.96 18.87
CNNFL 4 7 8 38.41 38.60
FLUCCS 8 15 18 9.00 11.90
DeepFL𝑐𝑜𝑣 12 15 16 12.68 13.74
Grace 11 16 20 8.80 9.42

Mockito

Ochiai 7 14 18 20.22 24.77
CNNFL 3 4 7 117.09 118.53
FLUCCS 7 19 22 14.78 18.63
DeepFL𝑐𝑜𝑣 9 17 22 13.42 16.49
Grace 15 22 26 8.06 12.40

Closure

Ochiai 14 30 38 90.28 102.28
CNNFL 0 0 1 550.50 558.55
FLUCCS 42 66 77 36.61 48.61
DeepFL𝑐𝑜𝑣 39 62 74 25.24 28.54
Grace 47 70 84 11.31 12.76

Overall

Ochiai 80 165 196 37.74 43.09
CNNFL 55 117 143 126.50 128.46
FLUCCS 160 249 275 16.53 21.53
DeepFL𝑐𝑜𝑣 166 248 279 10.65 12.15
Grace 195 263 298 6.23 7.56

Top-N metrics are similar and are omitted due to space limit. Based
on the figures, we have the following observations.

RQ2a: Impact of ranking loss functions. Listwise is the most
effective ranking loss function which achieves the best top and
average rankings, outperforming pairwise and pointwise by 9.97%
and 72.90% in MFR while by 10.64% and 71.63% in MAR. On the
contrary, pointwise is the least effective one in terms of all metrics,
e.g., it localizes 36 and 13 less bugs within Top-1 than listwise and
pointwise respectively. This observation further confirms that the
default listwise loss is the most suitable loss function for Grace. The
reason may be that the proposed graph-based representation and
graph neural network can reserve relationships between entities
during learning process, which inherently supports the globally
ranking mechanism (i.e., consider all elements during ranking) in
listwise loss. In addition, it is interesting that in our study pairwise
outperforms pointwise substantially, but the prior work presents the
opposite conclusion that pairwise loss is less effective than pointwise
when integrated in learning-based technique DeepFL [41]. Such
inconsistencies may also result from the difference in data repre-
sentations and model architectures between Grace and DeepFL:

different from Grace which integrally considers all methods as
one training data item, DeepFL regards each method as an individ-
ual training data item, and may ignore the relationships between
methods. Thus, pairwise cannot outperform pointwise for DeepFL.

RQ2b: Impact of code representation. The results demon-
strate that the proposed code representation (i.e., representing code
structures as code nodes and code edges in Definition 4.1) positively
contributes to the effectiveness of Grace. In particular, Grace lo-
calizes 54 less bugs within Top-1 and downgrades MFR/MAR by
27.61%/23.94% when adopting the coarse-grained code representa-
tion. It confirms our motivation that integrating with fine-grained
code structures can provide helpful hints from coverage-based fault
localization.

RQ2c: Impact of test representation.The results demonstrate
that the proposed test representation (i.e., representing tests as in-
dividual test nodes in Definition 4.1) also positively contributes to
Grace. In particular, Grace localizes 25 less bugs within Top-1
and downgrades MFR/MAR by 9.18%/7.14% when removing the
fine-grained test representation. This finding further confirms our
motivation that abstracting tests into numbers can impair the in-
tegrity of coverage information and downgrade the effectiveness
of fault localization.

(a) Loss function (b) Code represent. (c) Test represent.

Figure 5: Impact of Grace components

6.3 RQ3: Integrating with Other Information

In this RQ, we integrate Grace with DeepFL to investigate comple-
mentarity between features learned by Grace and other informa-
tion used in DeepFL. Table 5 presents fault localization results of the
original DeepFL and the enhanced DeepFL (i.e., DeepFL𝐺𝑟𝑎𝑐𝑒 ). The
results show that Grace can further boost DeepFL by localizing 225
bugs (i.e., 18 more bugs) within Top-1, which has also achieves the
best fault localization results on Defects4J (V1.2.0) to our knowledge.
Moreover, MAR and MFR are consistently improved by 31.18% and
26.33%, respectively. We further performWilcoxon signed-rank test
with Bonferroni corrections at the significance level of 0.05, which
confirms that the improvement is significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05).
Our results indicate that Grace has indeed learned helpful infor-
mation for fault localization by fully exploiting detailed coverage,
and the learned features are complementary to various information
used in state-of-the-art learning-to-combine technique DeepFL, in-
cluding suspiciousness scores computed by spectrum-based fault
localization and mutation-based fault localization, textual similarity,
and code complexity. In addition, this finding also indicates that
integrating Grace with other information can further enable more
powerful fault localization.
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Table 5: Integrating Grace with DeepFL

Techniques Top-1 Top-3 Top-5 MFR MAR

DeepFL 207 277 304 6.99 8.43
DeepFL𝐺𝑟𝑎𝑐𝑒 225 290 316 4.81 6.21

6.4 RQ4: Cross-Project Prediction on Defects4J

(V2.0.0)

We further evaluate Grace on the newer version of Defects4J
benchmark, i.e., Defects4J (V2.0.0), to our knowledge, which has
been used in fault localization studies for the first time. Table 6
presents fault localization results of Grace and state-of-the-art
coverage-based fault localization techniques in the cross-project
prediction scenario. From the table, we can observe that Grace still
substantially outperforms all compared techniques by localizing 85
bugs within Top-1, i.e., 53 more than Ochiai, 58 more than CNNFL,
28 more than FLUCCS, and 42 more than DeepFL𝑐𝑜𝑣 . Moreover,
MAR and MFR are consistently improved at least by 50.57% and
38.38% compared to all the other coverage-based techniques. In ad-
dition, we can observe that compared to within-project prediction
(i.e., RQ1) on Defects4J (V1.2.0), all techniques perform worse on
Defects4J (V2.0.0) in the cross-project prediction scenario. For exam-
ple, DeepFL𝑐𝑜𝑣 can localize 42.03% bugs within Top-1 on Defects4J
(V1.2.0) while only 19.03% bugs within Top-1 on Defects4J (V2.0.0);
as for Grace, it can localize 49.36% bugs within Top-1 on Defects4J
(V1.2.0) while 37.64% bugs within Top-1 on Defects4J (V2.0.0). The
observation is as expected, since in the within-project prediction
scenario, testing data and training data are from the same project,
which tend to share similar features; whereas the cross-project
prediction can be more challenging since characteristics between
projects can be very different. Even though, we can observe that
compared to other techniques, Grace exhibits the smallest effec-
tiveness drop between within-project and cross-project prediction.
In summary, our results demonstrate that even when trained in the
cross-project prediction scenario, Grace still consistently outper-
forms state-of-the-art coverage-based techniques on hundreds of
extra bugs.

Table 6: Cross-project effectiveness on Defects4J (V2.0.0)

Subject Techniques Top-1 Top-3 Top-5 MFR MAR

Overall

Ochiai 32 74 93 14.26 20.19
CNNFL 27 60 77 21.76 27.12
FLUCCS 57 97 119 14.85 20.95
DeepFL𝑐𝑜𝑣 43 89 112 14.03 21.06
Grace 85 119 140 6.92 12.91

7 CONCLUSION

In this work, we present a novel coverage-based fault localiza-
tion technique, Grace, which fully utilizes coverage information
with graph-based representation learning. We first propose a novel
graph-based representation to reserve all detailed coverage informa-
tion and fine-grained code structures into one graph: with tests and
program entities as nodes, while with coverage and code structures
as edges. Then we leverage Gated Graph Neural Network to learn
valuable features from the graph-based coverage representation
and to rank program entities in a listwise way. Our evaluation on
the widely used benchmark Defects4J (V1.2.0) shows that Grace

significantly outperforms state-of-the-art coverage-based fault lo-
calization. In particular, Grace localizes 195 bugs within Top-1
whereas the best comparison technique can at most localize 166
bugs within Top-1. We further investigate the impact of each com-
ponent and find that they all positively contribute to Grace. In
addition, our results also demonstrate that Grace has learned essen-
tial features from coverage, which are complementary to various
information used in existing learning-based fault localization. Fi-
nally, we evaluate Grace in the cross-project prediction scenario
on extra 226 bugs from Defects4J (V2.0.0), and find that Grace con-
sistently outperforms state-of-the-art coverage-based techniques.
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