
How Does Regression Test Prioritization Perform in
Real-World Software Evolution?

Yafeng Lu1, Yiling Lou2, Shiyang Cheng1, Lingming Zhang1, Dan Hao2∗, Yangfan Zhou3, Lu Zhang2

1Department of Computer Science, University of Texas at Dallas, 75080, USA
{yxl131230,sxc145630,lingming.zhang}@utdallas.edu

2Key Laboratory of High Confidence Software Technologies (Peking University), MoE, China
Institute of Software, EECS, Peking University, Beijing, 100871, China

{louyiling,haodan,zhanglucs}@pku.edu.cn
3School of Computer Science, Fudan University, 201203, China

zyf@fudan.edu.cn

ABSTRACT
In recent years, researchers have intensively investigated var-
ious topics in test prioritization, which aims to re-order tests
to increase the rate of fault detection during regression test-
ing. While the main research focus in test prioritization
is on proposing novel prioritization techniques and evalu-
ating on more and larger subject systems, little effort has
been put on investigating the threats to validity in exist-
ing work on test prioritization. One main threat to validity
is that existing work mainly evaluates prioritization tech-
niques based on simple artificial changes on the source code
and tests. For example, the changes in the source code usu-
ally include only seeded program faults, whereas the test
suite is usually not augmented at all. On the contrary, in
real-world software development, software systems usually
undergo various changes on the source code and test suite
augmentation. Therefore, it is not clear whether the conclu-
sions drawn by existing work in test prioritization from the
artificial changes are still valid for real-world software evo-
lution. In this paper, we present the first empirical study to
investigate this important threat to validity in test prioriti-
zation. We reimplemented 24 variant techniques of both the
traditional and time-aware test prioritization, and investi-
gated the impacts of software evolution on those techniques
based on the version history of 8 real-world Java programs
from GitHub. The results show that for both traditional and
time-aware test prioritization, test suite augmentation sig-
nificantly hampers their effectiveness, whereas source code
changes alone do not influence their effectiveness much.

1. INTRODUCTION
During software development and maintenance, a soft-

ware system continuously evolves due to various reasons,
e.g., adding new features, fixing bugs, or improving main-

∗Corresponding author.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884874

tainability and efficiency. As the change on the software
may incur bugs, it is necessary to apply regression testing
to revalidate the modified system. However, it is costly to
perform regression testing. As reported, regression testing
consumes 80% of the overall testing budgets [1,2], and some
test suite consumes more than seven weeks [3]. Therefore,
it is important to set a balance between the tests that ide-
ally should be run in regression testing and the tests that
are affordable to be used in regression testing, which is the
intuition of test prioritization [4].

Following this intuition, test prioritization [3–5] is pro-
posed to improve the efficiency of regression testing, espe-
cially when the testing resources (e.g., time, developers’ ef-
forts) are limited. In particular, test prioritization aims to
schedule the execution order of existing tests so as to maxi-
mize some testing objective (e.g., the rate of fault-detection).
In the literature, a huge body of research work has been
dedicated to test prioritization to investigate various prior-
itization algorithms [6–10], coverage criteria [11, 12], and so
on [13–15].

However, little work in the literature studied the threats
to validity in test prioritization, especially the threat result-
ing from software changes. In software evolution, a software
is usually modified by changing its source code and adding
tests. However, the existing work on test prioritization is
usually evaluated without considering test change. In par-
ticular, for a modified software, its test suite consists of: (1)
existing tests, which are designed to test the software system
before modification (denoted as S) and can be used to test
the modified software system (denoted as S′), and (2) new
tests, which are added to test the modification. Although all
these tests are used to test the modified software, none of the
existing work on test prioritization is applied or evaluated by
considering the influence of the added tests. Furthermore,
the existing work on test prioritization is usually evaluated
based on the software whose changes on the source code in-
clude only seeded program faults. That is, the difference
between the original software system S and the modified
software system S′ is only in the seeded faults. However,
the changes from S to S′ consists of many edits, which are
not necessarily related to program faults. In summary, exist-
ing work on test prioritization is usually evaluated based on
such simplified artificial changes (without real source code
changes and test additions), and thus it is not clear whether

http://dx.doi.org/10.1145/2884781.2884874

the conclusions drawn by the existing work are still valid for
real-world software evolution.

In this paper, we point out this important threat to valid-
ity in existing test prioritization, and investigate the effec-
tiveness of existing test prioritization in real-world software
evolution by conducting an empirical study on 8 open-source
projects. To investigate the influence of source code change,
we constructed two types of source code changes, seeding
faults into the original software like existing test prioritiza-
tion work does and seeding faults into the modified software
(i.e., latter versions of a project). To investigate the influ-
ence of test additions, we prioritized tests without consid-
ering newly added tests as well as all tests including newly
added tests. Furthermore, as time budgets are limited in
some cases, we also investigated test prioritization consider-
ing the influence of time budgets. That is, in the empirical
study, we implemented traditional techniques [3, 7, 8] and
time-aware techniques [16], each of which is implemented
based on coverage information of various granularities (i.e.,
statement, method, and branch coverage).

The experimental results show that the test additions have
significant influence on the effectiveness of test prioritiza-
tion. When new tests are added, all the traditional and
time-aware test prioritization techniques become much less
effective. Another interesting finding is that source code
changes alone (without test additions) do not have much in-
fluence on the effectiveness of test prioritization. Both tradi-
tional and time-aware test prioritization techniques perform
quite stable in case of source code changes without test addi-
tions, indicating that out-of-date coverage information (due
to code changes) can still be effective for test prioritization.

The paper makes the following contributions:

• Pointing out an important threat to validity in the
evaluation of existing test prioritization – evolution of
source code and tests.

• The first empirical study on investigating the influence
of the threat resulting from real-world software evolu-
tion, by considering various time-unaware and time-
aware prioritization techniques based on various cov-
erage information.

• Interesting findings showing that both traditional and
time-aware test prioritization are significantly nega-
tively influenced by test additions, but not influenced
much by source code changes alone. Practical guide-
lines are also learnt from the study to help with test
prioritization in practice.

2. STUDIED TECHNIQUES
In this section, we explain the technical details about the

techniques investigated in the empirical study.

2.1 Traditional Test Prioritization
Given any test suite T and its set of permutations on tests

PT , traditional test prioritization aims to find a permuta-
tion T ′ ∈ PT that for any permutation T ′′ ∈ PT (T ′′ 6= T ′),
f(T ′′) ≤ f(T ′), where f is an objective function from a per-
mutation to a real number.

Most existing test prioritization techniques guide their
prioritization process based on coverage information, which
refers to whether any structural unit is covered by a test. In
this section, we explain the prioritization techniques based

on statement coverage, but they are applicable to other
types of structural coverage (e.g., method coverage or branch
coverage), which will be further investigated in Section 3.8.4.

2.1.1 Total&Additional Test Prioritization
The total test prioritization technique schedules the ex-

ecution order of tests based on the descendent number of
statements covered by these tests, whereas the additional
test prioritization technique schedules the execution order
of tests based on the number of statements that are uncov-
ered by already selected tests but covered by these tests.

The total&additional test prioritization techniques are sim-
ple greedy algorithms, but they are recognized as represen-
tative test prioritization techniques due to their effectiveness
and are taken as the control techniques in the evaluation of
existing work [8, 9].

2.1.2 Search-Based Test Prioritization
Search-based test prioritization is proposed by Li et al. [8],

and is an application of search-based software engineering [17,
18]. Typically, search-based test prioritization takes all the
permutations as candidate solutions and utilizes some heuris-
tics to guide the process of searching for a better execu-
tion order of tests. In this empirical study, we use genetic-
algorithm-based test prioritization as a representative of search-
based test prioritization due to its effectiveness [8].

The genetic-algorithm-based test prioritization technique [8]
encodes a permutation of a test suite by an N-size binary ar-
ray, which represents the position of each test in the priori-
tized test suite. Initially, a set of permutations are randomly
generated, which is taken as the initial population. Each
pair of permutations in the population is taken as parent per-
mutations to generate two offspring permutations through
crossover on a random position. For each offspring permu-
tation, the mutation operator1 randomly selects two tests
and exchanges their positions. To find an optimal solution,
the genetic-algorithm-based test prioritization technique de-
fines a fitness function based on the coverage of tests (e.g.,
average percentage of statement coverage).

2.1.3 Adaptive Random Test Prioritization
Based on random test prioritization, Jiang et al. [7] pre-

sented a set of adaptive random test prioritization tech-
niques by varying the types of coverage information and
function f2 that determines which test to select in priori-
tization process. In particular, adaptive random test prior-
itization has three types of f2: (1) f2 is defined to select a
test that has the largest average distance with the existing
selected tests, (2) f2 is defined to select a test that has the
largest maximum distance with the existing selected tests,
and (3) f2 is defined to select a test that has the largest
minimum distance with the existing selected tests. Further-
more, the random test prioritization technique of the last
type of f2 is evaluated to be more effective and efficient [7],
which is taken as the representative of adaptive random test
prioritization in this paper.

2.2 Time-Aware Test Prioritization
Considering the time budget, sometimes it is impossible

to run all the tests and thus it is necessary to investigate

1The concept “mutation operator” used here refers to an
operation in genetic programming, and is different from the
concept used in mutation testing.

test prioritization with time constraints. Considering the
time limit and various execution time of tests, time-aware
test prioritization is proposed in the literature [16, 19, 20],
which is usually formalized as follows. Given a test suite
T , its set of permutations on the tests PT , and time bud-
get timemax, time-aware test prioritization aims to find a
permutation T ′ ∈ PT satisfying that for any element T ′′ ∈
PT (T ′ 6= T ′′), f(T ′) ≥ f(T ′′), time(T ′) ≤ timemax, and
time(T ′′) ≤ timemax, where f and time are the objective
and cost functions from permutations to real numbers [16],
respectively. Compared with traditional test prioritization,
time-aware test prioritization additionally requires the pri-
oritized test suite to satisfy the time constraint.

2.2.1 Total&Additional Test Prioritization
Time-aware total/additional test prioritization is adopted

from traditional total/additional test prioritization by con-
sidering the time budget [16]. In particular, time-aware to-
tal/additional test prioritization first schedules the execu-
tion order of tests like traditional total/additional test pri-
oritization, and then keeps the preceding tests whose total
execution time does not exceed the time budget by removing
the remaining tests.

2.2.2 Total&Additional Test Prioritization via Inte-
ger Linear Programming

Based on traditional total&additional test prioritization,
Zhang et al. [16] proposed integer linear programming (ILP)
based test prioritization, which formalizes test selection in
the process of test prioritization using an ILP model. In
particular, Zhang et al. [16] presented a total test prioritiza-
tion technique via ILP, which first selects a set of tests that
has the maximum sum of the number of statements cov-
ered by each test and whose total execution time does not
exceed the given time budget and then schedules the execu-
tion order of these selected tests using the traditional total
strategy. Also, Zhang et al. [16] presented an additional test
prioritization technique via ILP, which selects a set of tests
that maximizes the number of statements covered by these
tests and whose total execution time does not exceed the
given time budget.

For each technique, we implement its variants based on
various coverage criteria (i.e., method, statement, and branch
coverage), and thus we have 8 ∗ 3 = 24 variant techniques.

3. EMPIRICAL STUDY

3.1 Research Questions
This study investigates the following research questions:

• RQ1: How does software evolution influence tradi-
tional test prioritization techniques in real-world evolv-
ing software systems?

• RQ2: How does software evolution influence time-
aware test prioritization techniques in real-world evolv-
ing software systems?

• RQ3: How do source code differences alone (i.e., with-
out test additions) influence traditional and time-aware
test prioritization techniques?

• RQ4: How do different test prioritization techniques
compare with random prioritization in software evolu-
tion?

In RQ1 and RQ2, we investigate the impact of real-world
software evolution (including both code changes and test
additions) for both traditional and time-aware test prioriti-
zation. Since added tests vary for different projects, we fur-
ther distinguish the impacts of added tests from the impacts
of source code changes (which cause test coverage changes).
That is, in RQ3, we exclude the tests that are newly added,
and only investigate the effectiveness of various prioritiza-
tion techniques for tests that exist in earlier versions (and
thus only have source code changes). Furthermore, in RQ4,
we investigate when the simple random prioritization can be
competitive to the existing techniques.

3.2 Implementation and Supporting Tools
To collect various coverage information, we used on-the-fly

bytecode instrumentation which dynamically instruments classes
loaded into the JVM through a Java agent without any
modification of the target program. We implemented code
instrumentation based on the ASM byte-code manipulation
and analysis framework2 under our FaultTracer tool [21,22].
To implement the ILP based techniques (i.e., total&additional
test prioritization via ILP), we used a mathematical pro-
gramming solver, GUROBI Optimization3, which is used to
represent and solve the equations formulated by the ILP-
based techniques. All the test prioritization techniques have
been implemented as Java and Python programs. Note that
all the tools developed by ourselves are available from our
project website. Finally, we used the PIT mutation testing
tool4 to seed faults into our subject programs.

3.3 Subject Systems, Tests, and Faults
In the empirical study, we selected 8 GitHub5 Java projects

that have been widely used in software testing research [23–
25]. Each project has accumulated various commits dur-
ing real-world software evolution. Following prior work [23],
for each project, we first chose the latest commit that can
be successfully applied with the used tools, then selected
up to 10 versions by counting backwards 30 commits each
time. Note that each project version has a corresponding
JUnit test suite accumulated during software development.
In software testing research, it has been shown by previous
studies [26–28] that mutation faults are close to real faults
and are suitable for software testing experimentation, since
real faults are usually hard to find and small in number,
making it hard to perform statistical analysis. Furthermore,
mutation faults have also been widely used in test prioriti-
zation research [9, 12, 29]. Therefore, in this work, we use
mutation faults generated by the PIT mutation testing tool
to investigate the effectiveness of various test prioritization
techniques.

Table 1 presents the basic information of each subject,
including its number of versions (abbreviated as ”Ver”). As
each project has more than one versions, the columns“MinS”
and“MaxS”present the minimum and maximum numbers of
lines of code for each project, whereas the columns “MinT”
and “MaxT” present the minimum and maximum numbers
of tests for each project. As this empirical study is designed
to investigate the influences of test addition, the columns
“Ft1” and “Ft2” presents the numbers of faults used for the

2http://asm.ow2.org/
3http://www.gurobi.com/
4http://pitest.org/
5https://github.com/

http://asm.ow2.org/
http://www.gurobi.com/
http://pitest.org/
https://github.com/

Sub Ver MinS MaxS MinT MaxT Ft1 Ft2

jasmine-maven 5 1,640 4,348 7 118 500 10
java-apns 8 1,362 3,839 15 87 410 80
jopt-simple 4 6,636 8,569 394 657 500 500
la4j 9 8,094 12,555 172 625 500 500
scribe-java 8 2,497 5,957 38 99 500 385
vraptor-core 5 31,176 32,997 985 1,124 500 500
assertj-core 8 55,443 67,282 4,055 5,269 500 500
metrics-core 6 11,477 12,536 270 318 500 500

Table 1: Subject statistics

study with test additions and the number of faults used for
the study without test addition, respectively6.

3.4 Independent Variables
We consider the following independent variables (IVs) in

the empirical study.
IV1: Prioritization Scenarios. We consider both (1)
traditional test prioritization which prioritizes and executes
all tests, and (2) time-aware test prioritization which only
prioritizes and executes tests within certain time constraints.
IV2: Prioritization Techniques. For each test prior-
itization scenario, we also consider various representative
prioritization techniques. For traditional prioritization, we
consider (1) total technique, (2) additional technique, (3)
search-based technique, and (4) adaptive random technique.
For time-aware prioritization, we consider (1) total tech-
nique, (2) additional technique7,(3) total ILP-based tech-
nique, and (4) additional ILP-based technique. Besides these
techniques, we also implement random prioritization as the
controlled technique for traditional and time-aware prior-
itization in comparison. In random prioritization, we ran-
domly generate 1000 execution orders and take their average
results as suggested by the literature [30].
IV3: Coverage Criteria. Since all the studied techniques
rely on code coverage information, we also investigate the
influence of coverage criteria. More specifically, we studied
three widely used coverage criteria: (1) method coverage,
(2) statement coverage, and (3) branch coverage.
IV4: Revision Granularities. Existing work mainly ap-
plies test prioritization based the coverage data of software
version vi on the same version with seeded faults. How-
ever, in practice, when prioritizing tests for vi, we only have
coverage of an older version, e.g., vi−1. Therefore, besides,
applying test prioritization based on coverage of vi to vi (de-
noted as vi → vi), we also study vi−1 → vi, vi−2 → vi, ...,
v1 → vi, to study the influence of larger revision for test
prioritization.
IV5: Time Budgets. In time-aware test prioritization,
only tests within certain time budgets are allowed to exe-
cute. Following existing work [16], we consider the following
time budgets b ∈ {5%, 25%, 50%, 75%}, where b refers to the
percentage of execution time of the entire test suite.

3.5 Dependent Variable
To evaluate the effectiveness of the various test prioriti-

zation techniques in software evolution, we used the widely
used APFD (Average Percentage of Faults Detected) met-
ric [3, 6, 9, 31]. For any given test suite and faulty program,
higher APFD values imply higher fault-detection rate. To
better evaluate the effectiveness of time-aware prioritiza-

6Note that the number of faults used can be different for the
two settings because different sets of faults are detected by
different sets of tests.
7We consider the total and additional techniques here be-
cause they have been studied as baseline techniques in time-
aware prioritization [16].

tion, we followed existing work on time-aware prioritization
and adopted a slight variant of the traditional APFD met-
ric [16, 19]. The details of the variant APFD metric can be
found in [19].

3.6 Experimental Setup
For each subject system S, we obtain a set of subsequent

revisions, e.g., Sv1 , Sv2 , ..., Svn . Then, for the latest version
Svn , we apply the following process.

First, we construct various faulty versions of Svn . Ac-
cording to existing work [9,12,29], a specific program version
usually does not contain a large number of faults. Therefore,
similar to the existing work [9], we construct faulty versions
by grouping 5 faults together. That is, for each program
version, we randomly produce up to 100 fault groups each
of which contains 5 randomly selected faults. Note that we
guarantee that the selected faults can be detected by at least
one test, and the different fault groups should not have com-
mon faults. That said, we have constructed up to 500 faulty
versions for each program version.

Second, we collect three types of coverage (i.e., method,
statement, and branch coverage) for Svn and all its earlier
versions, i.e., Sv1 to Svn−1 . That said, we have 3n coverage
files for each project.

Third, we apply all the studied techniques based on the
coverage files of Svn to faulty versions of Svn , denoted as
Svn → Svn . In addition, we also apply the techniques based
on the coverage files of earlier versions to faulty versions of
Svn , i.e., Svi → Svn (i ∈ [1, n − 1]). Note that for newly
added tests without coverage, we simply put them at the
end of the prioritization sequence in an alphabetical order.

Finally, we collect all the prioritization APFD values of
Svn based on the combination of all our independent vari-
ables, and apply data analysis.

3.7 Threats to Validity
The threat to internal validity lies in the implementation

of the test prioritization techniques used in the empirical
study. To reduce this threat, we used existing tools (e.g.,
GUROBI) to aid the implementation and reviewed all the
code of the test prioritization techniques before conducting
the empirical study.

The threats to external validity mainly lie in the subjects
and faults. Although the subjects may not be sufficiently
representative, especially for programs in other program-
ming languages, all the subjects used in the empirical study
are real-world Java projects and have been used in previ-
ous studies on software testing [23, 24]. This threat can be
further reduced by using more programs in various program-
ming languages (e.g., C, C++, Java and C#).

In software development, whenever the developers detect
any regression fault, they usually will fix the fault before
commiting rather than commiting a version with failed tests.
Therefore, it is hard to find real regression faults in open-
source code repositories. In addition, according to the exper-
imental study conducted by Do and Rothermel [29], mutation-
generated faults are suitable to be used in test prioritization
studies. Therefore, we used mutation faults in our evalua-
tion. To further reduce this threat, we performed a prelimi-
nary study by using all the 27 real-world faults of joda-time
from Defects4J [32] to simulate real regression faults. The
study further confirms that test additions impact test pri-

oritization results significantly while source code changes do
not.

The threat to construct validity mainly lies in the metric
used to assess the effectiveness of prioritization techniques.
The APFD metric we used has been extensively used in prior
work [3, 16, 19], but it does not consider all the costs and
benefits related to test prioritization [29]. Further reduction
of this threat requires more study using more metrics.

3.8 Result Analysis
In this section, we present our main experimental findings.

Note that all our detailed experimental data and results are
available online8.

3.8.1 RQ1: Impacts of Software Evolution on Tradi-
tional Test Prioritization

Figure 1 presents the boxplots of the APFD values for all
the four traditional test prioritization techniques using the
statement coverage criterion on all projects. The results for
the other two coverage criteria are quite close to those of
statement coverage and can be found on our webpage. Each
sub-figure presents the detailed APFD results when using
each version’s coverage information to prioritize the tests for
the latest version for each project using statement coverage.
In each sub-figure, the x-axis shows the versions from which
the coverage is collected, the y-axis shows the APFD val-
ues for the techniques when prioritizing tests for the latest
version, and each boxplot presents the APFD distribution
(median, upper/lower quartile, and 95th/5th percentile val-
ues) based on different fault groups for each technique using
each version’s coverage information. We use white, blue,
green, orange, and red boxes to represent the random, total,
additional, ART, and search-based techniques respectively.
From the figure, we have the following observations:

First, for all projects, all the techniques except the total
technique have a clear growth trend when using more up-to-
date coverage for prioritization. For example, for java-apns,
the median APFD value of the additional strategy is 0.59
when using v1’s statement coverage to prioritize tests for
v8, and it grows to 0.87 when using v8’s statement coverage
to prioritize tests for v8. The total strategy does not have
a clear growth trend for the majority of the subjects. We
think the reason to be that the total technique does not use
the coverage information effectively, and thus is not sensitive
to the coverage changes.

Second, when using the most up-to-date coverage infor-
mation, for the majority of the subjects, the additional and
the search-based techniques are among the best prioritiza-
tion technique, while the ART technique is also competitive.
This finding confirms the previous work on search-based test
prioritization [8] and adaptive random test prioritization [7],
respectively. In addition, our results further demonstrate
that the search-based test prioritization technique is supe-
rior to the ART technique (to our knowledge, those two
techniques have never been compared before).

Third, when the version used for coverage collection is far
from the version for prioritization (i.e., massive code changes
occur), all the four techniques become close in performance,
demonstrating the importance of using up-to-date coverage
information for test prioritization. For example, for la4j, the
total, additional, ART, and search-based techniques have

8http://utdallas.edu/˜yxl131230/icse16support.html

median APFD values of 0.53, 0.85, 0.80, and 0.83, respec-
tively, when using coverage of v8 to prioritize tests for v9.
In contrast, the median APFD value of the total technique
increases to 0.67, while the median APFD values of all the
other techniques drop to around 0.71, when using coverage
of v1 to prioritize tests for v9.

3.8.2 RQ2: Impacts of Software Evolution on Time-
Aware Test Prioritization

Figure 2 presents the APFD values for all the four time-
aware test prioritization techniques (together with the ran-
dom prioritization) using the 50% time constraint based on
the statement coverage9. Each sub-figure presents the de-
tailed APFD results when using each version’s coverage in-
formation to prioritize the tests for the latest version for each
project using the 50% time constraint. The settings for each
sub-figure are the same with those in Figure 1. The only dif-
ference is that now we use white, blue, green, orange, and
red boxes to represent the random, total, additional, ILP-
total, and ILP-additional techniques, respectively. From the
results, we have the following observations:

First, the additional, ILP-total, and ILP-additional tech-
niques have a clear growth trend when using more up-to-date
coverage information for test prioritization. For example, for
jopt-simple (with the 5% time constraint) the median APFD
value of the additional strategy is 0.38 when using v1’s state-
ment coverage to prioritize tests for v4, and it grows to 0.58
when using v4’s statement coverage to prioritize tests for v4.

Second, similar as traditional test prioritization without
time constraints, the total technique also does not have a
clear growth trend when using more up-to-date coverage
information. For example, for java-apns when using 50%
time constraint for test prioritization, surprisingly, when
we use code coverage of v8 to prioritize tests for v8, the
median APFD value even falls below 0, while it becomes
larger than 0.6 when using less up-to-date coverage infor-
mation (i.e., from v7). We looked into the code, and found
the reason to be that version v8 introduced a newly-added
huge test (i.e., handleTransmissionErrorInQueuedConnection

of test class ApnsConnectionCacheTest), which has an average
execution time of 248ms (far more than the execution time
of other tests) and covers a huge amount of code elements
(statements/methods/branches). Therefore, when the to-
tal technique uses v8’s coverage to prioritize tests, it tends
to put that huge test at the very beginning. Then, under
the 50% time constraint, only 4 tests can be run when us-
ing v8’s coverage to prioritize tests for v8. On the contrary,
when using less up-to-date coverage information, the newly
added huge test does not have coverage at all, and will be
put into the end of the test execution sequence, enabling
more tests to be executed. For example, under the 50%
time constraint, when using the coverage information from
v1 to v7 to prioritize tests for v8, 41, 57, 67, 67, 73, 73, 75
tests can be executed, respectively. Therefore, the APFD
values for those coverage versions are much higher.

Third, when using the most up-to-date coverage informa-
tion, the ILP-additional technique always performs the best,
which confirms previous study on time-aware test prioriti-
zation [16]. Furthermore, our results also demonstrate that
the ILP-additional technique is the most stable and effective

9Note that due to the space limitation, we present the results
for other coverage criteria and time constraints (similar to
the results shown in this paper) in our project homepage.

http://utdallas.edu/~yxl131230/icse16support.html

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� ��

jasmine-maven-plugin (stmt-cov)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

java-apns (stmt-cov)
-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

�� �� �� ��

jopt-simple (stmt-cov)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� �� ��

la4j (stmt-cov)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

�� �� �� �� �� �� �� ��

scribe-java (stmt-cov)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� ��

vraptor-core (stmt-cov)
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� ��

metrics-core (stmt-cov)
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

assertj-core (stmt-cov)

Figure 1: Results for traditional test prioritization techniques (i.e., random , total , additional , ART , and search-based
) based on statement coverage (with new tests)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� ��

jasmine-maven-plugin (50% time)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

�� �� �� �� �� �� �� ��

java-apns (50% time)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

�� �� �� ��

jopt-simple (50% time)
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� �� ��

la4j (50% time)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

scribe-java (50% time)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

�� �� �� �� ��

vraptor-core (50% time)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

�� �� �� �� �� ��

metrics-core (50% time)
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

assertj-core (50% time)

Figure 2: Results for time-aware test prioritization techniques (i.e., random , total , additional , ILP-total , and
ILP-additional) with statement coverage and 50% time constraint (with new tests)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

�� �� �� �� ��

jasmine-maven-plugin (stmt-cov)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

java-apns (stmt-cov)
 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

�� �� �� ��

jopt-simple (stmt-cov)
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� �� ��

la4j (stmt-cov)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

scribe-java (stmt-cov)
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� ��

vraptor-core (stmt-cov)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� ��

metrics-core (stmt-cov)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

assertj-core (stmt-cov)

Figure 3: Results for traditional test prioritization techniques (i.e., random , total , additional , ART , and search-based
) based on statement coverage (excluding new tests)

technique even when using less up-to-date coverage informa-
tion.

3.8.3 RQ3: Impacts of Only Source Code Changes
on Test Prioritization

Similar with Figure 1, Figure 3 presents the APFD values
for all the four traditional test prioritization techniques us-
ing statement coverage criteria on all projects. Similar with
Figure 2, Figure 4 presents the APFD values for all the four
time-aware test prioritization techniques (together with the
random prioritization) using the 50% time constraints based
on the statement coverage. The only change is that in Fig-
ure 3 and Figure 4, we consider only the tests that exist for
all versions in order to study the influence of coverage change

alone (i.e., excluding the influence of test additions)10. Note
that the corresponding figures for other coverage and time
constraint settings are all available from our webpage. From
the two figures, we observe that for traditional test prioriti-
zation, the additional and search-based techniques perform
the best across all versions. For example, for la4j, when us-
ing the coverage from the earliest version to prioritize tests
of the latest version, both the additional and search-based
techniques have median APFD results of 0.93, whereas the
total and ART techniques have median APFD results of
0.78 and 0.91, respectively. For time-aware test prioritiza-
tion, the ILP-additional technique performs the best nearly

10Note that there are only 3 tests in common for all versions
of jasmine-maven, thus the boxplots cannot be shown.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

�� �� �� �� ��

jasmine-maven-plugin (50% time)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

�� �� �� �� �� �� �� ��

java-apns (50% time)
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� ��

jopt-simple (50% time)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

�� �� �� �� �� �� �� �� ��

la4j (50% time)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

scribe-java (50% time)
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� ��

vraptor-core (50% time)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

�� �� �� �� �� ��

metrics-core (50% time)
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

�� �� �� �� �� �� �� ��

assertj-core (50% time)

Figure 4: Results for time-aware test prioritization techniques (i.e., random , total , additional , ILP-total , and
ILP-additional) with statement coverage and 50% time constraint (excluding new tests)

Tech Sub With new tests Without new tests
p-value v1 v2 v3 v4 v5 v6 v7 v8 v9 p-value v1 v2 v3 v4 v5 v6 v7 v8 v9

Total jopt-simple p<0.05 b b a a – – – – – 0.987 a a a a – – – – –
vraptor-core 0.147 a a a a a – – – – 0.999 a a a a a – – – –
metrics-core 0.339 a a a a a a – – – 1.000 a a a a a a – – –
java-apns p<0.05 b b a a a a a a – p<0.05 a a b b b b b b –
assertj-core p<0.05 b b b b b a a a – 1.000 a a a a a a a a –
jasmine-maven p<0.05 c bc b a a – – – – p<0.05 b a a a a – – – –
scribe-java 0.854 a a a a a a a a – 0.960 a a a a a a a a –
la4j p<0.05 a a b bc bcd d bcd bcd cd 0.956 a a a a a a a a a

Addit. jopt-simple p<0.05 b b a a – – – – – 0.998 a a a a – – – – –
vraptor-core p<0.05 b b ab a a – – – – 0.987 a a a a a – – – –
metrics-core 0.991 a a a a a a – – – 1.000 a a a a a a – – –
java-apns p<0.05 c c b b b b b a – 0.842 a a a a a a a a –
assertj-core p<0.05 d c c bc bc ab a a – 1.000 a a a a a a a a –
jasmine-maven p<0.05 c c b a a – – – – p<0.05 b a a a a – – – –
scribe-java p<0.05 c c c bc bc ab a a – 0.998 a a a a a a a a –
la4j p<0.05 b b c c bc b a a a 0.997 a a a a a a a a a

ART jopt-simple p<0.05 b b a a – – – – – 0.119 a a a a – – – – –
vraptor-core p<0.05 b ab ab a ab – – – – 0.931 a a a a a – – – –
metrics-core p<0.05 bc c b a bc bc – – – p<0.05 c a c ab a bc – – –
java-apns p<0.05 d cd bc b b b b a – p<0.05 a a a a a a a a –
assertj-core p<0.05 c b b b b ab a a – p<0.05 a ab ab ab b ab b ab –
jasmine-maven p<0.05 b b a a a – – – – p<0.05 a b b b b – – – –
scribe-java 0.499 a a a a a a a a – p<0.05 bcd bc ab d a bcd cd bc –
la4j p<0.05 c c de e cd c ab b a p<0.05 e cde cde cd de de ab a bc

Search jopt-simple p<0.05 b b a a – – – – – p<0.05 b a ab ab – – – – –
vraptor-core p<0.05 b b b a a – – – – 0.933 a a a a a – – – –
metrics-core p<0.05 b ab b a b ab – – – p<0.05 b b b b a b – – –
java-apns p<0.05 c c b b b b b a – 0.973 a a a a a a a a –
assertj-core p<0.05 d bc c bc bc abc a ab – p<0.05 b ab ab ab b b ab a –
jasmine-maven p<0.05 d c b a a – – – – p<0.05 b a a a a – – – –
scribe-java p<0.05 c c c bc bc ab a a – 0.951 a a a a a a a a –
la4j p<0.05 b b cd d bc b a a a p<0.05 c b a ab a bc ab b b

Table 2: ANOVA analysis and Tukey’s HSD test among using statement coverage of different versions for traditional priori-
tization

across all versions for all time constraints, and the additional
technique can be competitive when the time constraints are
not tight (e.g., >=75%).

We also observe that for all the studied techniques, their
effectiveness is not influenced much by the use of coverage
data from different versions. To illustrate, for the vast ma-
jority of the sub-figures in Figures 1 and 2, the effectiveness
of all techniques tends to increase when using more up-to-
date coverage information. However, for all sub-figures in
Figures 3 and 4, the effectiveness of all techniques is stable
when using coverage from different versions. To further con-
firm our observation, we perform one-way ANOVA analy-
sis [33] at the significance level of 0.05 to investigate whether
using coverage information from different versions incur any
significant effectiveness differences inside each techique. In
addition, we further perform Tukey HSD post-hoc test to
rank the effectiveness when using coverage information of
different versions as different groups for each technique. The

detailed results for traditional/time-aware test prioritization
are shown in Table 2/3. In each table, Columns 1 and 2 list
all the techniques and subjects. Column 3 presents the one-
way ANOVA analysis results, and Column 4 presents the
detailed Tukey HSD grouping results (“a” means the group
with best effectiveness) on using coverage data of different
versions when considering new tests. Similarly, Columns 5
and 6 present the corresponding one-way ANOVA analysis
and Tukey HSD test results when excluding new tests.

From the tables, we observe that when considering new
tests, the effectiveness of each technique has significant dif-
ferences (rejecting the NULL hypothesis of one-way ANOVA
analysis by p < 0.05) when using coverage data from differ-
ent versions for the vast majority of the studied subjects.
To illustrate, the search-based technique for traditional test
prioritization has significant differences on all the studied
subjects, and all the studied time-aware test prioritization
techniques have significant differences on all subjects. In

Tech Sub With new tests Without new tests
p-value v1 v2 v3 v4 v5 v6 v7 v8 v9 p-value v1 v2 v3 v4 v5 v6 v7 v8 v9

Total jopt-simple p<0.05 b b a a – – – – – 1.000 a a a a – – – – –
vraptor-core p<0.05 a d c b b – – – – 0.942 a a a a a – – – –
metrics-core p<0.05 b b b b b a – – – 1.000 a a a a a a – – –
java-apns p<0.05 c b a a a a a d – p<0.05 a a b b b b b b –
assertj-core p<0.05 e d d d d c b a – 0.785 a a a a a a a a –
jasmine-maven p<0.05 c b a a a – – – – p<0.05 b a a a a – – – –
scribe-java p<0.05 a a a a a ab ab b – 0.458 a a a a a a a a –
la4j p<0.05 a b c c cd de d d e p<0.05 b c cd cd a cd ab cd d

Addit. jopt-simple p<0.05 c c b a – – – – – 0.925 a a a a – – – – –
vraptor-core p<0.05 a d b c c – – – – 0.271 a a a a a – – – –
metrics-core p<0.05 b b b b b a – – – 0.983 a a a a a a – – –
java-apns p<0.05 c b a a a a a c – 0.732 a a a a a a a a –
assertj-core p<0.05 e d d d d c b a – 1.000 a a a a a a a a –
jasmine-maven p<0.05 d c b a a – – – – p<0.05 b a a a a – – – –
scribe-java p<0.05 b b b ab ab a a a – p<0.05 b ab ab ab ab a ab ab –
la4j p<0.05 d f g f e c b b a p<0.05 ab ab de cde bc bcd e ab a

ILP-T jopt-simple p<0.05 b c a a – – – – – 0.933 a a a a – – – – –
vraptor-core p<0.05 c b a a a – – – – p<0.05 b b ab a a – – – –
metrics-core p<0.05 b b b b b a – – – 0.809 a a a a a a – – –
java-apns p<0.05 d c b b ab ab ab a – p<0.05 a a b b b b b b –
assertj-core p<0.05 e d d d d c b a – 0.763 a a a a a a a a –
jasmine-maven p<0.05 c b ab a a – – – – p<0.05 b a b a a – – – –
scribe-java p<0.05 b ab a a ab ab a a – p<0.05 b b b b b b b a –
la4j p<0.05 a b c cd cd e de b b p<0.05 c d c c b c bc a a

ILP-A jopt-simple p<0.05 c d b a – – – – – 0.970 a a a a – – – – –
vraptor-core p<0.05 d c b a a – – – – p<0.05 b ab a a a – – – –
metrics-core p<0.05 c c c ab b a – – – p<0.05 b b b a a a – – –
java-apns p<0.05 e d c c bc bc b a – p<0.05 ab b a ab a a ab ab –
assertj-core p<0.05 e d d d d c b a – 1.000 a a a a a a a a –
jasmine-maven p<0.05 d c b a a – – – – p<0.05 b a b a a – – – –
scribe-java p<0.05 d d d cd cd bc ab a – 0.209 a a a a a a a a –
la4j p<0.05 c d f e c b a a a p<0.05 bcd b e cde de bcd a bc bcd

Table 3: ANOVA analysis and Tukey’s HSD test among using statement coverage of different versions for time-aware priori-
tization

addition, for most techniques, Tukey HSD test shows that
using more up-to-date coverage data tends to be more ef-
fective. For example, the effectiveness of the search-based
technique is grouped into“a”or“ab”when using the most up-
to-date coverage, while being grouped into “b” to “d” when
using the most obsolete coverage data. On the contrary,
when excluding new tests, the studied techniques tend not
to have significant differences when using coverage data from
different versions. In addition, even for the cases that there
are statistical differences, the techniques using the most up-
to-date coverage data are usually not categorized as the best
performance group. This observation further confirms that
source code changes alone (i.e., excluding impacts of new
tests) do not impact the effectiveness of test prioritization
techniques much.

3.8.4 RQ4: Comparison with Random Prioritization
As simple random techniques can be powerful in software

testing research [34,35], we also investigate the strengths of
random technique in test prioritization. More specifically,
we compare all the studied techniques against random pri-
oritization both considering new tests and excluding new
tests. We chose to use the Wilcoxon Signed-Rank Test [36]
for the comparison, because it is suitable even for the case
that the sample differences may not be normally distributed.
Table 4/5 shows the detailed Wilcoxon test results at the
0.05 significance level for traditional/time-aware test prior-
itization techniques. In each table, Columns 1 and 2 list
all the subjects and techniques. Columns 3 lists the statis-
tical test results for comparing each technique against the
random prioritization when using each version’s coverage to
prioritize all tests for the latest version. Column 4 presents
similar results with Column 3 but excluding new tests. We
use m to denote that there is no statistical difference, 4 to
denote that the studied technique is significantly better, and

6 to denote that the random prioritization is significantly
better.

From the two tables, we observe that random prioriti-
zation can be competitive when programs evolve with new
tests. For example, when prioritizing tests for v8 using cov-
erage data from v7 for java-apns, all traditional test priori-
tization techniques cannot outperform the random prioriti-
zation. The results on time-aware test prioritization further
confirms this finding. For example, when prioritizing tests
for v9 of la4j under the 50% time constraint, random priori-
tization can outperform all techniques when using coverage
data earlier than v7. In contrast, when considering only
source code changes (i.e., excluding new tests), a number of
techniques can always significantly outperform the random
prioritization in both traditional and time-aware test prior-
itization. For traditional test prioritization, all the studied
techniques except the total technique are at least as effective
as the random prioritization using coverage data from any
version for all subjects. For time-aware test prioritization,
the additional and ILP-additional techniques are at least as
effective as the random prioritization using coverage data
from any version for all subjects.

In summary, random prioritization can be competitive
when new tests are involved in software evolution. However,
state-of-the-art techniques can outperform random prioriti-
zation stably when excluding new tests.

3.9 Practical Guidelines
Our study reveals a number of interesting findings that

can serve as the practical guidelines for test prioritization.
Source code changes vs. test additions. Our experi-
mental results demonstrate that the effectiveness of test pri-
oritization techniques can be greatly influenced by software
evolution (including source code changes and test additions).
However, when only considering source code changes (i.e.,

Sub Tech With new tests Without new tests
v1 v2 v3 v4 v5 v6 v7 v8 v9 v1 v2 v3 v4 v5 v6 v7 v8 v9

jasmine-mavenTotal 6(0.00)6(0.00)6(0.00)m(0.94)m(0.92)– – – – m(0.35)m(0.35)m(0.35)m(0.35)m(0.35)– – – –
Addit. 6(0.00)6(0.00)m(0.60)4(0.00)4(0.00)– – – – m(0.35)m(0.35)m(0.35)m(0.35)m(0.35)– – – –
ART 6(0.00)6(0.00)m(0.31)4(0.03)4(0.04)– – – – m(0.35)m(0.35)m(0.35)m(0.35)m(0.35)– – – –
Search 6(0.00)6(0.00)m(0.42)4(0.00)4(0.00)– – – – m(0.35)m(0.35)m(0.35)m(0.35)m(0.35)– – – –

java-apns Total 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.01)– 4(0.00)4(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)–
Addit. 6(0.00)6(0.00)m(0.08)m(0.13)m(0.84)m(0.82)m(0.38)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
ART 6(0.00)6(0.00)6(0.00)6(0.00)6(0.02)m(0.08)m(0.06)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
Search 6(0.00)6(0.00)6(0.04)m(0.15)m(0.82)m(0.75)m(0.23)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–

jopt-simple Total 6(0.00)6(0.00)6(0.00)6(0.00)– – – – – 4(0.00)4(0.00)4(0.00)4(0.00)– – – – –
Addit. 6(0.00)6(0.00)m(0.14)4(0.00)– – – – – 4(0.00)4(0.00)4(0.00)4(0.00)– – – – –
ART 6(0.00)6(0.00)m(0.38)4(0.00)– – – – – 4(0.00)4(0.00)4(0.00)4(0.00)– – – – –
Search 6(0.00)6(0.00)6(0.03)4(0.00)– – – – – 4(0.00)4(0.00)4(0.00)4(0.00)– – – – –

la4j Total 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00) 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)
Addit. 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)4(0.00)4(0.00)4(0.00) 4(0.03)m(0.07)m(0.07)m(0.07)4(0.02)m(0.07)4(0.03)m(0.07)m(0.07)
ART 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)4(0.00)m(0.15)4(0.00) m(0.63)4(0.00)4(0.00)4(0.00)m(0.08)4(0.00)4(0.00)4(0.00)4(0.00)
Search 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)4(0.00)4(0.00)4(0.00) m(0.47)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)

scribe-java Total m(0.73)m(0.53)m(0.69)m(0.88)m(0.13)m(0.09)m(0.18)6(0.03)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
Addit. m(0.53)m(0.60)m(0.30)m(0.10)m(0.19)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
ART m(0.06)m(0.38)m(0.23)6(0.01)6(0.03)m(0.49)6(0.02)6(0.02)– 4(0.00)4(0.00)4(0.00)4(0.01)4(0.00)4(0.00)4(0.02)4(0.00)–
Search m(0.44)m(0.53)m(0.31)m(0.10)m(0.24)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–

vraptor-core Total 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)– – – – 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)– – – –
Addit. m(0.10)4(0.02)4(0.00)4(0.00)4(0.00)– – – – 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – – –
ART 6(0.02)m(0.09)m(0.52)m(0.51)m(0.99)– – – – m(0.88)m(0.19)m(0.81)m(0.56)m(0.39)– – – –
Search m(0.43)m(0.29)m(0.08)4(0.00)4(0.00)– – – – 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – – –

metrics-core Total 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)– – – 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)– – –
Addit. 4(0.00)4(0.00)4(0.00)4(0.00)4(0.05)4(0.00)– – – 4(0.03)4(0.03)4(0.03)4(0.03)4(0.02)4(0.03)– – –
ART m(0.43)m(0.91)4(0.00)4(0.00)m(0.12)4(0.00)– – – 4(0.00)4(0.00)4(0.02)4(0.00)4(0.00)4(0.00)– – –
Search m(0.70)4(0.01)m(0.54)4(0.00)m(0.88)4(0.00)– – – m(0.92)m(0.81)m(0.20)m(0.33)4(0.00)m(0.16)– – –

assertj-core Total m(0.26)m(0.89)m(0.64)m(0.09)m(0.10)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
Addit. m(0.10)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
ART m(0.58)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
Search 6(0.01)4(0.00)4(0.04)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–

Table 4: Wilcoxon tests between each studied technique and random technique based on statement coverage for traditional
prioritization (p values included in brackets)

Sub Tech With new tests Without new tests
v1 v2 v3 v4 v5 v6 v7 v8 v9 v1 v2 v3 v4 v5 v6 v7 v8 v9

jasmine-mavenTotal 6(0.00)6(0.00)m(0.13)m(0.40)m(0.51)– – – – m(0.50)m(0.50)m(0.50)m(0.50)m(0.50)– – – –
Addit. 6(0.00)6(0.00)4(0.00)4(0.00)4(0.00)– – – – m(0.50)m(0.50)m(0.50)m(0.50)m(0.50)– – – –
ILP-T 6(0.00)6(0.00)m(0.56)m(0.71)m(0.74)– – – – m(0.50)m(0.50)m(0.50)m(0.50)m(0.50)– – – –
ILP-A 6(0.00)m(0.68)4(0.00)4(0.00)4(0.00)– – – – m(0.50)m(0.50)m(0.50)m(0.50)m(0.50)– – – –

java-apns Total 6(0.00)6(0.00)4(0.05)4(0.03)4(0.00)4(0.00)4(0.00)6(0.00)– 4(0.00)4(0.00)6(0.02)6(0.02)6(0.02)6(0.02)6(0.02)6(0.02)–
Addit. 6(0.00)6(0.01)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)6(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
ILP-T 6(0.00)m(0.17)4(0.01)4(0.01)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)m(0.35)m(0.32)m(0.32)m(0.32)m(0.25)m(0.27)–
ILP-A 6(0.00)m(0.08)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–

jopt-simple Total 6(0.00)6(0.00)6(0.00)6(0.00)– – – – – m(0.73)m(0.78)m(0.85)m(0.76)– – – – –
Addit. 6(0.00)6(0.00)4(0.02)4(0.00)– – – – – 4(0.00)4(0.00)4(0.00)4(0.00)– – – – –
ILP-T 6(0.00)6(0.00)6(0.00)6(0.01)– – – – – m(0.09)m(0.10)m(0.35)m(0.20)– – – – –
ILP-A 6(0.00)6(0.00)4(0.01)4(0.00)– – – – – 4(0.00)4(0.00)4(0.00)4(0.00)– – – – –

la4j Total 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00) 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)
Addit. 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)4(0.00)4(0.00)4(0.00) 4(0.00)4(0.00)m(0.37)m(0.23)4(0.00)4(0.00)m(0.22)4(0.00)4(0.00)
ILP-T 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00) 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)
ILP-A 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)4(0.00)4(0.00)4(0.00) 4(0.00)4(0.00)m(0.66)4(0.01)m(0.05)4(0.00)4(0.00)4(0.00)4(0.00)

scribe-java Total 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.01)m(0.97)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
Addit. 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
ILP-T m(0.53)4(0.02)4(0.00)4(0.00)4(0.01)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
ILP-A 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–

vraptor-core Total 4(0.00)m(0.91)4(0.00)4(0.00)4(0.00)– – – – 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)– – – –
Addit. 4(0.00)4(0.03)4(0.00)4(0.00)4(0.00)– – – – 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – – –
ILP-T 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – – – 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)– – – –
ILP-A 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – – – 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – – –

metrics-core Total m(0.20)m(0.20)m(0.20)m(0.16)m(0.46)4(0.00)– – – 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)– – –
Addit. 6(0.00)6(0.00)6(0.00)6(0.00)6(0.00)m(0.44)– – – m(0.35)m(0.26)m(0.24)m(0.35)m(0.15)m(0.08)– – –
ILP-T 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – – 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – –
ILP-A 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – – 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– – –

assertj-core Total 6(0.00)m(0.49)m(0.43)m(0.13)4(0.03)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
Addit. m(0.52)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
ILP-T 6(0.00)m(0.83)m(0.14)4(0.02)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–
ILP-A 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)– 4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)4(0.00)–

Table 5: Wilcoxon tests between each studied technique and random technique based on statement coverage for time-aware
prioritization under the 50% time constraints (p values included in brackets)

excluding test additions), test prioritization techniques per-
form stably even there are massive changes (i.e., using cov-
erage data of a very early version to prioritize tests for the
current version). This finding provides implications for both
researchers and developers, i.e., they need to consider the
influence of test addition when proposing new test prioriti-
zation techniques or applying test prioritization techniques
in practice.
Traditional prioritization vs. time-aware prioritiza-
tion. Our experimental results demonstrate that the im-
pacts of software evolution (both source code evolution,and
test additions) are similar for both traditional and time-
aware test prioritization.
Prioritization using various coverage criteria. Our
experimental results on different coverage criteria demon-
strate that the impacts of software evolution are similar for
various coverage criteria (detailed data available online.)
Prioritization using various revision granularities.
Different revision granularities (i.e., the distance between

the version for coverage collection and the version for test
prioritization) can greatly impact test prioritization results.
For instance, using the finer revision granularity usually pro-
duces more effective test prioritization results. The reason is
that smaller number of tests may be added for finer revision
granularity.
Prioritization techniques and random prioritization.
Our experimental results show that random prioritization
can be competitive when software evolution involves test
additions. However, state-of-the-art test prioritization tech-
niques can always outperform random prioritization when
only considering source code changes (i.e., excluding new
tests). Among various test prioritization techniques, our
study demonstrates that the additional and search-based
test prioritization can be the most effective for traditional
test prioritization, while the ILP-additional technique is the
most effective technique for time-aware test prioritization.

4. RELATED WORK
In the literature, a considerable amount of research focuses

on test prioritization, and recently Yoo and Harman [37] con-
ducted a survey on regression test minimization [23,38–40],
selection [6,24,41], and prioritization [3,7,42–46], which pro-
vides a broad view of the state-of-art on test prioritization.
Prioritization Strategies. The research in this category
mainly focuses on various strategies or algorithms used in
test prioritization. Among various prioritization strategies,
the traditional total and additional strategies [3,47] are the
most widely used. Based on the basic mechanisms of the
total and additional techniques, Zhang et al. [9] presented
unified test prioritization to bridge their gap based on the
probability that a test case can detect faults and generated a
series of prioritization strategies between them. Li et al. [8]
transferred the test prioritization problem into a searching
problem and presented two searching algorithms (i.e., hill-
climbing algorithm and genetic programming algorithm) for
test prioritization. Motivated by random test prioritization,
Jiang et al. [7] presented adaptive random test prioritization,
which tends to select a test case that is the farthest from the
already selected tests. Tonella et al. [48] presented a ma-
chine learning based technique, which prioritizes tests based
on user knowledge. Yoo et al. [45] proposed a cluster-based
test prioritization technique, which clusters tests based on
their dynamic behavior. Recently, Nguyen et al. [49] and
Saha et al. [50] presented to prioritize tests based on infor-
mation retrieval. In this paper, we do not present a novel
test prioritization strategy, but aim to investigate the effec-
tiveness of typical test prioritization techniques through an
empirical study.
Coverage Criteria. The research in this category mainly
focuses on various coverage criteria used in test prioritiza-
tion. Besides the most widely used coverage criteria (e.g.,
statement and method coverage [3], block coverage [51], mod-
ified condition and decision coverage [52], and statically es-
timated method coverage [53, 54]), Elbaum et al. [46] pro-
posed fault-exposing-potential and fault index coverage to
guide prioritization. Mei et al. [55] proposed a family of
dataflow testing criteria, and three levels of coverage crite-
ria, i.e., workflow, XPath, and WSDL for service-oriented
business application [56]. Xu and Ding [57] proposed tran-
sition coverage and roundtrip coverage to prioritize aspect
tests. Thomas et al. [58] proposed to build topics using the
linguistic data in tests so as to guide test prioritization. In
this paper, we do not present any new coverage criteria,
but investigate the effectiveness of test prioritization based
on widely-used coverage criteria (i.e., statement coverage,
method coverage, and branch coverage).
Constraints. The research in this category mainly focuses
on test prioritization with various constraints, e.g., test cost
and fault severity [59, 60]. That is, researchers investigated
how to prioritize tests under these constraints. In particu-
lar, Hou et al. [61] proposed a test prioritization technique
with quota constraints for service-centric systems. Kim and
Porter [62] proposed a history-based test prioritization tech-
nique with time and resource constraints. To address the
time constraint, Walcott et al. [19] proposed a genetic al-
gorithm, Zhang et al. [16] proposed an integer linear pro-
gramming based technique, and Do et al. [63] presented an
empirical study investigating the effect of time constraints.
In this paper, we consider test prioritization without any

constraint as well as test prioritization with only time con-
straints in the empirical study.
Measurements. The research in this category mainly fo-
cuses on how to measure the effectiveness of test prioriti-
zation techniques. Until now, the average percentage faults
detected (APFD) [3] is the mostly used metric for evaluating
test prioritization. Based on APFD, Elbaum et al. [59, 64]
proposed the weighted APFD by assigning higher weights
to tests with lower cost and/or with capability on detect-
ing faults with higher severity. Walcott et al. [19] extended
APFD by using a time penalty, and Do and Rothermel [65,
66] presented comprehensive economic models to accurately
assess tradeoffs between techniques in industrial testing en-
vironments. In this paper, we use APFD as a metric to mea-
sure the test prioritization results, and will consider other
measurements in the future.
Empirical Studies. The research in this category mainly
focuses on investigating test prioritization by considering the
influence of its internal or external factors through empiri-
cal studies. In particular, Rothermel et al. [3] investigated
the influence of coverage criterion (e.g.,statement coverage,
branch coverage, and probability of exposing faults). Do
et al. [63] investigated the influence of time constraints and
found that time constraints affected test prioritization tech-
niques differently. Rothermel et al. [67] investigated the in-
fluence of fault types (i.e., real faults, mutation faults, and
seeded faults). Elbaum et al. [46] investigated the influence
of specific versions, coverage criteria (i.e., statement cover-
age and function coverage), and predictor of fault-proneness.
Similar to these work, this paper also presents an empirical
study on test prioritization, but it focuses on the influence of
the important threat resulting from real software evolution,
which has never been investigated before.

5. CONCLUSION
Although test prioritization has been intensively investi-

gated, little effort has focused on the investigation of its
threats to validity. In this paper, we pointed out an im-
portant threat resulting from real-world software evolution,
including both source code changes and test additions, which
are usually ignored by the existing work on test prioritiza-
tion. Without considering this threat, it is unclear whether
the existing conclusions drawn by the existing work are still
valid for real-world software evolution. Therefore, we con-
ducted the first empirical study to investigate the influence
of this threat in test prioritization and got the following
main findings: (1) both the traditional and time-aware test
prioritization techniques studied in this paper become much
less effective in software evolution involving test additions;
(2) both traditional and time-aware test prioritization tech-
niques are stable and effective in case of only source code
changes (i.e., without test additions).

6. ACKNOWLEDGEMENTS
We thank August Shi from the University of Illinois for

sharing the experimental subjects with us. This research
was sponsored by faculty startup funds from the University
of Texas at Dallas, the National Basic Research Program
of China (973) under Grant No. 2014CB347701, the Na-
tional Natural Science Foundation of China under Grant
No.61421091, 91318301, 61225007, and 61522201.

7. REFERENCES
[1] C. Kaner, “Improving the maintainability of

automated test suites,” in Proc. QW, 1997.

[2] P. K. Chittimalli and M. J. Harrold, “Recomputing
coverage information to assist regression testing,”
IEEE TSE, vol. 35, no. 4, pp. 452–469, 2009.

[3] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold, “Test case prioritization: an empirical study,”
in ICSM, pp. 179–188, 1999.

[4] W. E. Wong, J. R. Horgan, S. London, and
H. Agrawal, “A study of effective regression testing in
practice,” in Proc. ISSRE, pp. 264–274, 1997.

[5] M. J. Harrold, “Testing evolving software,” JSS,
vol. 47, no. 2–3, pp. 173–181, 1999.

[6] G. Rothermel and M. Harrold, “A safe, efficient
regression test selection technique,” TOSEM, vol. 6,
no. 2, pp. 173–210, 1997.

[7] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse,
“Adaptive random test case prioritization,” in ASE,
pp. 257–266, 2009.

[8] Z. Li, M. Harman, and R. Hierons, “Search algorithms
for regression test case prioritisation,” TSE, vol. 33,
no. 4, pp. 225–237, 2007.

[9] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and
H. Mei, “Bridging the gap between the total and
additional test-case prioritization strategies,” in ICSE,
pp. 192–201, 2013.

[10] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and
H. Mei, “A unified test case prioritization approach,”
TOSEM, vol. 10, pp. 1–31, 2014.

[11] S. e Zehra Haidry and T. Miller, “Using dependency
structures for prioritization of functional test suites,”
TSE, vol. 39, no. 2, pp. 258–275, 2013.

[12] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and
G. Rothermel, “A static approach to prioritizing junit
test cases,” TSE, vol. 38, no. 6, pp. 1258–1275, 2012.

[13] C. Zhang, A. Groce, and M. A. Alipour, “Using test
case reduction and prioritization to improve symbolic
execution,” in Proc. ISSTA, pp. 160–170, 2014.

[14] L. Zhang, D. Marinov, and S. Khurshid, “Faster
mutation testing inspired by test prioritization and
reduction,” in Proc. ISSTA, pp. 235–245, 2013.

[15] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel,
“The effects of time constraints on test case
prioritization: A series of controlled experiments,”
TSE, vol. 36, no. 5, pp. 593–617, 2010.

[16] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei,
“Time-aware test-case prioritization using integer
linear programming,” in ISSTA, pp. 213–224, 2009.

[17] M. Harman, S. A. Mansouri, and Y. Zhang,
“Search-based software engineering: Trends,
techniques and applications,” CSUR, vol. 45, no. 1,
p. 11, 2012.

[18] M. Harman and B. F. Jones, “Search based software
engineering,” IST, vol. 43, no. 14, pp. 833–839, 2001.

[19] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and
R. S. Roos, “Time aware test suite prioritization,” in
ISSTA, pp. 1–11, 2006.

[20] S. Alspaugh, K. R. Walcott, M. Belanich, G. M.
Kapfhammer, and M. L. Soffa, “Efficient time-aware
prioritization with knapsack solvers,” in Workshop on

Empirical Assessment of Software Engineering
Languages and Technologies, pp. 17–31, 2007.

[21] L. Zhang, M. Kim, and S. Khurshid, “Localizing
failure-inducing program edits based on spectrum
information,” in ICSM, pp. 23–32, 2011.

[22] L. Zhang, M. Kim, and S. Khurshid, “Faulttracer: a
change impact and regression fault analysis tool for
evolving java programs,” in FSE, p. 40, 2012.

[23] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and
D. Marinov, “Balancing trade-offs in test-suite
reduction,” in Proc. FSE, pp. 246–256, 2014.

[24] A. Shi, T. Yung, A. Gyori, and D. Marinov,
“Comparing and combining test-suite reduction and
regression test selection,” in FSE, pp. 237–247, 2015.

[25] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable
testing: Detecting state-polluting tests to prevent test
dependency,” in ISSTA, pp. 223–233, 2015.

[26] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is
mutation an appropriate tool for testing
experiments?,” in ICSE, pp. 402–411, 2005.

[27] H. Do and G. Rothermel, “A controlled experiment
assessing test case prioritization techniques via
mutation faults,” in ICSM, pp. 411–420, 2005.

[28] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser, “Are mutants a valid
substitute for real faults in software testing,” in Proc.
FSE, pp. 654–665, 2014.

[29] H. Do and G. Rothermel, “On the use of mutation
faults in empirical assessments of test case
prioritization techniques,” TSE, vol. 32, no. 9,
pp. 733–752, 2006.

[30] A. Arcuri and L. Briand, “A practical guide for using
statistical tests to assess randomized algorithms in
software engineering,” in ICSE, pp. 1–10, 2011.

[31] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry,
“An information retrieval approach for regression test
prioritization based on program changes,” 2015. To
appear.

[32] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A
database of existing faults to enable controlled testing
studies for java programs,” in ISSTA, pp. 437–440,
2014.

[33] T. H. Wonnacott and R. J. Wonnacott, Introductory
statistics, vol. 19690. Wiley New York, 1972.

[34] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is
operator-based mutant selection superior to random
mutant selection?,” in ICSE, pp. 435–444, 2010.

[35] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The
strength of random search on automated program
repair,” in ICSE, pp. 254–265, 2014.

[36] F. Wilcoxon, “Individual comparisons by ranking
methods,” in Breakthroughs in Statistics, pp. 196–202,
1992.

[37] S. Yoo and M. Harman, “Regression testing
minimization, selection and prioritization: a survey,”
STVR, vol. 22, no. 2, pp. 67–120, 2012.

[38] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria
models for all-uses test suite reduction,” in ICSE,
pp. 106–115, 2004.

[39] G. Rothermel, M. J. Harrold, J. Von Ronne, and
C. Hong, “Empirical studies of test-suite reduction,”
STVR, vol. 12, no. 4, pp. 219–249, 2002.

[40] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid,
“An empirical study of junit test-suite reduction,” in
ISSRE, pp. 170–179, 2011.

[41] T. Ball, “On the limit of control flow analysis for
regression test selection,” in ISSTA, pp. 134–142, 1998.

[42] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang,
L. Zhang, and B. Xie, “A text-vector based approach
to test case prioritization,” in ICST, 2016. To appear.

[43] Y. Lou, D. Hao, and L. Zhang, “Mutation-based
test-case prioritization in software evolution,” in
ISSRE, pp. 46–57, 2015.

[44] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and
T. Xie, “To be optimal or not in test-case
prioritization,” TSE, 2015. To appear.

[45] S. Yoo, M. Harman, P. Tonella, and A. Susi,
“Clustering test cases to achieve effective and scalable
prioritisation incorporating expert knowledge,” in
Proc. ISSTA, pp. 201–212, 2009.

[46] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test
case prioritization: A family of empirical studies,”
TSE, vol. 28, no. 2, pp. 159–182, 2002.

[47] S. Elbaum, A. Malishevsky, and G. Rothermel,
“Prioritizing test cases for regression testing,” in
ISSTA, pp. 102–112, 2000.

[48] P. Tonella, P. Avesani, and A. Susi, “Using the
case-based ranking methodology for test case
prioritization,” in Proc. ICSM, pp. 123–133, 2006.

[49] C. D. Nguyen, A. Marchetto, and P. Tonella, “Test
case prioritization for audit testing of evolving web
services using information retrieval techniques,” in
Proc. ICWS, pp. 636–643, 2011.

[50] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry,
“An information retrieval approach for regression test
prioritization based on program changes,” in Proc.
ICSE, p. to appear, 2015.

[51] H. Do, G. Rothermel, and A. Kinneer, “Empirical
studies of test case prioritization in a JUnit testing
environment,” in ISSRE, pp. 113–124, 2004.

[52] J. A. Jones and M. J. Harrold, “Test-suite reduction
and prioritization for modified condition/decision
coverage,” in ICSM, pp. 92–101, 2001.

[53] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei,
“Prioritizing JUnit test cases in absence of coverage
information,” in ICSM, pp. 19–28, 2009.

[54] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and
G. Rothermel, “A static approach to prioritizing junit
test cases,” TSE, vol. 38, no. 6, pp. 1258–1275, 2012.

[55] L. Mei, W. K. Chan, and T. H. Tse, “Data flow
testing of service-oriented workflow applications,” in
ICSE, pp. 371–380, 2008.

[56] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse, “Test
case prioritization for regression testing of
service-oriented business applications,” in WWW,
pp. 901–910, 2009.

[57] D. Xu and J. Ding, “Prioritizing state-based aspect
tests,” in Proc. ICST, pp. 265–274, 2010.

[58] S. W. Thomas, H. Hemmati, A. E. Hassan, and
D. Blostein, “Static test case prioritization using topic
models,” ESE, vol. 19, no. 1, pp. 182–212, 2014.

[59] S. Elbaum, A. Malishevsky, and G. Rothermel,
“Incorporating varying test costs and fault severities
into test case prioritization,” in ICSE, pp. 329–338,
2001.

[60] H. Park, H. Ryu, and J. Baik, “Historical value-based
approach for cost-cognizant test case prioritization to
improve the effectiveness of regression testing,” in
SSIRI, pp. 39–46, 2008.

[61] S.-S. Hou, L. Zhang, T. Xie, and J. Sun,
“Quota-constrained test-case prioritization for
regression testing of service-centric systems,” in ICSM,
pp. 257–266, 2008.

[62] J. M. Kim and A. Porter, “A history-based test
prioritization technique for regression testing in
resource constrained environments,” in ICSE,
pp. 119–129, 2002.

[63] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel,
“An empirical study of the effect of time constraints
on the cost-benefits of regression testing,” in FSE,
pp. 71–82, 2008.

[64] A. Malishevsky, J. R. Ruthru, G. Rothermel, and
S. Elbaum, “Cost-cognizant test case prioritization,”
tech. rep., Department Computer Science and
Engineering of University of Nebraska, 2006.

[65] H. Do and G. Rothermel, “Using sensitivity analysis to
create simplified economic models for regression
testing,” in Proc. ISSTA, pp. 51–62, 2008.

[66] H. Do and G. Rothermel, “An empirical study of
regression testing techniques incorporating context
and lifecycle factors and improved cost-benefit
models,” in Proc. FSE, pp. 141–151, 2006.

[67] G. Rothermel, R. J. Untch, C. Chu, and M. J.
Harrold, “Prioritizing test cases for regression testing,”
TSE, vol. 27, no. 10, pp. 929–948, 2001.

