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ABSTRACT
Unit testing could be used to validate the correctness of basic units
of the software system under test. To reduce manual efforts in
conducting unit testing, the research community has contributed
with tools that automatically generate unit test cases, including test
inputs and test oracles (e.g., assertions). Recently, ATLAS, a deep
learning (DL) based approach, was proposed to generate assertions
for a unit test based on other already written unit tests. Despite
promising, the effectiveness of ATLAS is still limited. To improve
the effectiveness, in this work, we make the first attempt to leverage
Information Retrieval (IR) in assertion generation and propose an
IR-based approach, including the technique of IR-based assertion
retrieval and the technique of retrieved-assertion adaptation. In
addition, we propose an integration approach to combine our IR-
based approach with a DL-based approach (e.g., ATLAS) to further
improve the effectiveness. Our experimental results show that our
IR-based approach outperforms the state-of-the-art DL-based ap-
proach, and integrating our IR-based approach with the DL-based
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approach can further achieve higher accuracy. Our results convey
an important message that information retrieval could be competi-
tive and worthwhile to pursue for software engineering tasks such
as assertion generation, and should be seriously considered by the
research community given that in recent years deep learning solu-
tions have been over-popularly adopted by the research community
for software engineering tasks.
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1 INTRODUCTION
Unit testing validates the correctness of the software system under
test by basic units. A basic unit refers to a small and functionally
discrete component (e.g., a method or a class) in a software system.
Compared with other levels of testing (e.g., integration testing and
system testing), unit testing can help detect and diagnose failures
more quickly, especially for complex software systems [11]. A typi-
cal unit test includes a test input and test oracle (e.g., assertions),
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and the latter serves as the specifications for the desired behavior
on the given test input.

To reduce manual efforts in writing unit tests, a large number
of tools have been proposed to generate test inputs automatically,
falling into three major categories. (1) Random testing, e.g., Ran-
doop [37], which conducts feedback-directed random testing by
analyzing collected execution traces. (2) Dynamic symbolic execu-
tion, e.g., JBSE [8], which dynamically conducts symbolic execution
with techniques designed to deal with programs that operate on
complex heap inputs. (3) Search-based testing, e.g., EvoSuite [15],
which applies genetic algorithms to generate and optimize test
inputs toward satisfying a coverage criterion.

Besides generating test inputs, such tools can automatically gen-
erate assertions with two main categories of traditional approaches
(which help detect only crashing faults or regression faults and are
incapable of detecting non-crashing faults in the current version
in the absence of a previous version). (1) Capture and assert [52].
For example, Randoop [37] and EvoSuite [15] create assertions
based on capturing and asserting the return values of all non-void-
return methods of the method sequence in the generated test input;
EvoSuite further reduces these assertions based on mutation test-
ing [22, 57]. (2) Differential testing [13]. For example, DiffGen [43]
generates assertions from runs on two different versions of a class
by checking the equality/equivalence of method-call return values
and receiver object states from the two versions.

To complement the traditional approaches of assertion genera-
tion, based on other already written unit tests, ATLAS [49], a deep
learning (DL) based approach, takes a test method without any
assertion (i.e., test input only) along with its focal method (i.e., the
method under test).1 In particular, the input to ATLAS is a pair:
a test method without assertion along with its focal method, in-
cluding these two methods’ respective method names and method
bodies. In the rest of this paper, we refer to such pair as focal-test
and multiple pairs as focal-tests. The output to ATLAS is a mean-
ingful assertion corresponding to the focal-test (i.e., one similar to
what developers would have written).

In contrast to the traditional approaches, ATLAS offers two ma-
jor advantages of assertion generation. First, ATLAS can generate
meaningful assertions for detecting non-crashing faults in the cur-
rent version, whereas the traditional approaches typically help
detect only crashing/regression faults with generated assertions
being unmeaningful. For example, an industrial evaluation [3] of
assertions generated by EvoSuite shows that “in manually written
tests, the assertions are meaningful and useful unlike the generated
ones”. Thus, developers can more desirably inspect assertions rec-
ommended by ATLAS when the developers are writing unit tests in
their IDE [42]. Second, ATLAS can generate assertions for the code
under test in the form of (even uncompilable) source code, whereas
the traditional approaches require the code under test to be compil-
able and executable. In other words, ATLAS can be applicable even
during in-progress development of the code under test (e.g., during
Test-Driven Development [6, 7]).

1When constructing the dataset used to evaluate ATLAS, the ATLAS authors exclude
test methods with multiple assertions, while keeping only test methods each with a
single assertion; in addition, the ATLAS authors determine the focal method for a test
method 𝑡 as the last non-JUnit-framework-API method invoked in 𝑡 .

However, the effectiveness of ATLAS is restricted by two major
limitations inherent in DL. First, assertions generated by ATLAS
are not explainable due to the un-explainable nature of DL [16, 47].
Because a recommended assertion may not be an actual assertion
applicable for developers, the developers need to inspect the rec-
ommended assertion. In this process of inspection, providing expla-
nations on why an assertion is recommended is valuable to assist
the developers. Second, approaches based on sequence-to-sequence
DL models suffer from the exposure bias [36] and disappearance of
the gradient [23, 24], resulting in poor effectiveness in generating
a long sequence of tokens as an assertion. In particular, we calcu-
late the accuracy of ATLAS in generating assertions of different
lengths on the dataset used by ATLAS, and we find that ATLAS
performs well (46.3% accuracy) in generating a short assertion (with
fewer than 15 tokens) whereas much worse (only 17.9% accuracy)
in generating a long assertion (with more than 15 tokens).

To address the preceding limitations, in this paper, we propose
an approach based on information retrieval (IR), including the tech-
nique of IR-based assertion retrieval and the technique of retrieved-
assertion adaptation. The input and output of the technique of
IR-based assertion retrieval are the same as those of ATLAS. This
technique first retrieves the assertion whose corresponding focal-
test is most similar to the given focal-test based on the Jaccard
similarity coefficient. To improve the quality of the retrieved asser-
tion, the technique of retrieved-assertion adaptation further adjusts
tokens in the retrieved assertion based on the context. Since the
focal-test corresponding to the assertion is also attained when using
IR to retrieve the assertion, the developers can attain a valuable ref-
erence when inspecting the assertion. In addition, since IR is based
on similarity, it is less challenging for our approach to generate a
long assertion.

Besides the IR-based approach, in this paper, we also propose an
integration approach to integrate our IR-based approach with any
DL-based approach (e.g., ATLAS) to enable more powerful asser-
tion generation. In particular, our integration approach carefully
examines the compatibility between our retrieved assertion and the
current focal-test: if the compatibility is higher than the threshold
(determined by a validation set), we directly return the retrieved as-
sertion as the final result; otherwise, we further apply the DL-based
approach to generate an assertion.

We evaluate our approaches on two datasets, an existing dataset
𝐷𝑎𝑡𝑎𝑜𝑙𝑑 used in ALTAS and a new dataset 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 constructed in
our work. While 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 simplifies the assertion generation prob-
lem by excluding some challenging cases (i.e., unknown tokens),
𝐷𝑎𝑡𝑎𝑛𝑒𝑤 is 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 ’s extended version that includes not only the
original 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 but also those excluded cases with unknown to-
kens. Our experimental results show that the accuracy and BLEU
score of our IR-based approach are substantially higher than AT-
LAS: the technique of IR-based assertion retrieval alone already
outperforms ALTAS with 4.84% and 16.34% higher accuracy on
both datasets, respectively; in addition, the technique of retrieved-
assertion adaptation further improves the accuracy by 7.37% and
2.63% on both datasets, respectively. Furthermore, our integration
approach, which combines our IR-based approach with the existing
DL-based approach ATLAS, achieves the highest accuracy on asser-
tion generation, i.e., 46.54% and 42.20% on both datasets (additional
15.12% and 20.54% over ATLAS), respectively.
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In summary, this paper makes the following main contributions:
• IR-based approach. We make the first attempt to lever-
age IR in assertion generation, including the technique of
IR-based assertion retrieval and the technique of retrieved-
assertion adaptation.
• Integration approach.Wepropose an integration approach
for integrating our IR-based approach and a DL-based ap-
proach (e.g., ATLAS) to enable more powerful assertion gen-
eration.
• Evaluations.We construct a more comprehensive dataset
(compared to the dataset used by ATLAS) including more
practical and challenging cases in assertion generation, and
extensively evaluate our approaches on both the original
dataset and the newly-constructed dataset.
• Results and practical implication. Our experimental re-
sults show that even the technique of IR-based assertion
retrieval alone already outperforms the state-of-the-art DL-
based approach, and the technique of retrieved-assertion
adaptation further improves the accuracy; moreover, inte-
grating our IR-based approach and the DL-based approach
could achieve a higher accuracy. Our results convey an im-
portant message that an IR-based approach can be competitive
and worthwhile to pursue for software engineering tasks such
as assertion generation, and should be seriously considered by
the research community given that in recent years DL solutions
have been over-popularly adopted by the research community
for software engineering tasks.

The remainder of this paper is organized as follows. Section 2
introduces the background and related work. Section 3 details the
proposed IR-based and integration approaches. Sections 4 and 5
describe the experimental setup and experimental results. Section 6
discusses the threats to validity of our work. Section 7 concludes
this paper.

2 BACKGROUND AND RELATEDWORK
In this section, we first introduce ALTAS. Then, we detail the related
work based on IR and the related work of integrating IR and DL.

2.1 DL-based Assertion Generation
With the recent development of DL, approaches are increasingly
proposed to utilize advanced DL techniques to tackle software engi-
neering tasks, such as fault diagnosis [29] and fixing [10, 18, 35, 46],
code summarization [19–21], and code clone detection [48, 50, 54,
56, 58]. Recently, Watson et al. [49] propose the first DL-based as-
sertion generation approach named ATLAS, which applies Neural
Machine Translation (NMT) to generate an assertion for the given
focal-test. ATLAS aims at predicting a meaningful assertion to vali-
date the correctness of the focal method. To collect the dataset for
training ATLAS, Watson et al. first extract Test-Assert Pairs (TAPs)
from JUnit-based projects in Github, where each pair consists of
the focal-test and its relevant assertion. The initial TAP set is then
preprocessed into two datasets: (i) raw source code, where TAPs
are simply tokenized; (ii) abstract code, where TAPs are first tok-
enized and the uncommon tokens are further represented by their
respective belonging type and sequential id. These two datasets are
used to evaluate ATLAS, respectively.

2.2 Information Retrieval
With the rapid expansion of human knowledge and information
storage, fast and accurate IR from a massive and multi-modal data-
base becomes an urgent need. In recent years, IR techniques have
been widely applied in different software engineering tasks, such
as feature location [25], code search [41], concept location [40],
software reuse [14, 31, 53], and traceability link recovery between
software artifacts [5, 30, 32].

IR techniques fetch the object that best matches the given query
from the database. Researchers have leveraged various similarity
coefficients in IR. For example, Jaccard [45], a widely-used similarity
coefficient, measures the similarity between two sets of data based
on their overlapping and unique items. The following formulation
presents Jaccard’s calculation, where 𝑋 and 𝑌 are two sets. The
value varies from 0% to 100%, and a higher value indicates a higher
similarity.

𝐽 (𝑋,𝑌 ) = |𝑋 ∩ 𝑌 |/|𝑋 ∪ 𝑌 |

2.3 Integration of IR and DL
There exists work that leverages IR to boost DL techniques for tasks
other than assertion generation. For example, Liu et al. [26] and
Parvez et al. [39] propose to incorporate IR into DL for the task
of code generation and summarization. In addition, Liu et al. [26]
propose to generate a commit message by a novel hybrid approach
of conducting IR followed by DL. Our work shares the same general
intuition of “combining IR and DL” with the aforementioned work,
but we tackle a different problem (i.e., assertion generation) and we
propose a novel integration approach. In addition, our contributions
also include the novel IR-based assertion generation and adaptation
approaches.

3 APPROACH
In this section, we introduce the proposed approaches in this work.
Our approaches include an IR-based approach and an integration
approach. The IR-based approach contains two techniques (IR-based
assertion retrieval and retrieved-assertion adaptation). Section 3.1
first introduces the technique of IR-based assertion retrieval (in
short as 𝐼𝑅𝑎𝑟 ). Given a focal-test in the test set, 𝐼𝑅𝑎𝑟 retrieves the
most similar focal-test in the training set and directly adopts its
corresponding assertion as the output. Section 3.2 presents the
technique of retrieved-assertion adaptation (in short as 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 )
to automatically modify the retrieved assertion. Section 3.3 further
illustrates an integration approach to combine a DL-based approach
(e.g., ATLAS) and the proposed IR-based approach.

3.1 IR-based Assertion Retrieval 𝐼𝑅𝑎𝑟
The basic idea of 𝐼𝑅𝑎𝑟 is to retrieve the assertion whose correspond-
ing focal-test has the highest similarity with the given focal-test.
More specifically, 𝐼𝑅𝑎𝑟 first uses javalang [44] to tokenize each
focal-test in the training set and test set, and removes duplicated
tokens from each focal-test to enable more efficient retrieval; then,
given a focal-test in the test set, 𝐼𝑅𝑎𝑟 calculates its Jaccard similarity
coefficient with all the focal-tests in the training set, and retrieves
the one with the highest similarity coefficient; finally, the assertion
corresponding to the retrieved focal-test is returned as the expected
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assertion. When there is a tie in similarity calculation, 𝐼𝑅𝑎𝑟 selects
the first one appearing in the training set.

Algorithm 1 IR-based Assertion Retrieval 𝐼𝑅𝑎𝑟
Input: 𝑇𝑒𝑠𝑡𝑓 : the focal-test to generate assertion for.
Input: 𝑇𝑟𝑎𝑖𝑛𝐹 : all focal-tests in the training set.
Input: 𝑇𝑟𝑎𝑖𝑛𝐴: all corresponding assertions in the training set.
Output: 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑓 : the focal-test retrieved by 𝐼𝑅𝑎𝑟 .
Output: 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑎 : the assertion retrieved by 𝐼𝑅𝑎𝑟 .
1: 𝑚𝑎𝑥 ← 0 , 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑓 ← “”, 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑎 ← “”
2: for 𝑖 = 1 to 𝑙𝑒𝑛(𝑇𝑟𝑎𝑖𝑛𝐹 ) do
3: 𝑗𝑎𝑐𝑐𝑎𝑟𝑑 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑇𝑒𝑠𝑡𝑓 ,𝑇𝑟𝑎𝑖𝑛𝐹 [𝑖])
4: if 𝑗𝑎𝑐𝑐𝑎𝑟𝑑 >𝑚𝑎𝑥 then
5: 𝑚𝑎𝑥 ← 𝑗𝑎𝑐𝑐𝑎𝑟𝑑

6: 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑓 ← 𝑇𝑟𝑎𝑖𝑛𝐹 [𝑖]
7: 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑎 ← 𝑇𝑟𝑎𝑖𝑛𝐴 [𝑖]
8: return 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑓 , 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑎

Algorithm 1 presents the detailed workflow of 𝐼𝑅𝑎𝑟 . Being the
inputs to the algorithm,𝑇𝑒𝑠𝑡𝑓 is the input focal-test whose assertion
would be generated by 𝐼𝑅𝑎𝑟 ; 𝑇𝑟𝑎𝑖𝑛𝐹 and 𝑇𝑟𝑎𝑖𝑛𝐴 are the lists of all
the focal-tests and their assertions in the training set. 𝐼𝑅𝑎𝑟 calculates
the Jaccard similarity between the input focal-test and each focal-
test in the training set (Line 3), selects the one with the highest
similarity (Lines 4-7), and returns its assertion as the output (Line
8).

Listing 1: A TAP example in the test set
//focal -test:
testReportErrorOnWrongDateEffective (){

java.lang.String drl="rule␣X␣date -effective␣\"9-asbrdfh -1974\"␣
when\n" + (("\$s:␣String ()"+"then\n") + "end\n");

org.kie.internal.builder.KnowledgeBuilder kb = org.kie.internal.
builder.KnowledgeBuilderFactory.newKnowledgeBuilder ();

kb.add(new org.drools.core.io.impl.ByteArrayResource(drl.
getBytes ()), ResourceType.DRL);

}
hasErrors (){

return (errors) != null;
}
// Assertion to generate:
org.junit.Assert.assertTrue(kb.hasErrors ())

Listing 2: A TAP example in the training set
//focal -test:
testFailedStaticImport (){

java.lang.String drl="package␣org.drools.test;␣\n" + (((((("" +
"import␣function␣org.does.not.exist.Foo;␣\n") + "") + "") +
"rule␣X␣when\n") + "then\n" ) + "end");

org.kie.internal.builder.KnowledgeBuilder kb = org.kie.internal.
builder.KnowledgeBuilderFactory.newKnowledgeBuilder ();

kb.add(new org.drools.core.io.impl.ByteArrayResource(drl.
getBytes ()), ResourceType.DRL) ;

}
hasErrors (){

return (errors) != null;
}
// Assertion:
org.junit.Assert.assertTrue(kb.hasErrors ())

For example, to generate an assertion for an input focal-test
in Listing 1, 𝐼𝑅𝑎𝑟 compares it with each focal-test in the training
set, finds the most similar one (as shown in Listing 2), and returns
its corresponding assertion. 𝐼𝑅𝑎𝑟 is based on the intuition that
similar focal-tests are likely to have the identical assertions. It is the

reason why 𝐼𝑅𝑎𝑟 works well for this example. However, it is also
very common for two similar focal-tests to share similar (but not
identical) assertions. For those cases, directly returning the retrieved
assertion would fail to generate a precise assertion. To address this
issue, in the next section, we then propose an adaptation technique
to modify the retrieved assertion.

3.2 Retrieved-Assertion Adaptation 𝑅𝐴𝑎𝑑𝑎𝑝𝑡

Although 𝐼𝑅𝑎𝑟 cannot always retrieve fully correct assertions from
the training set, it can return “almost correct” assertions that are
very similar to the correct ones. Therefore, we further propose an au-
tomated adaptation technique 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 , which modifies a retrieved
assertion toward the correct one based on context information. For
a retrieved assertion, 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 performs the following adaptation
procedure.
• Step 1: decide whether the assertion should be modi-
fied. Since not all the retrieved assertions need adaptation,
a pre-identification should be made first to avoid mistakenly
modifying a correct assertion. 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 considers an asser-
tion necessary for adaptation if it contains at least one token
absent from the input focal-test.
• Step 2: decide which token (i.e., invoked method, vari-
able, or constant) should be modified. 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 considers
a token that is absent from the input focal-test as a candidate
token for modification.
• Step 3: decide what value a candidate token should be
replaced with. 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 determines the replacement value
by analyzing the token correspondence between the focal-
tests in the test and training sets. We observe that most
retrieved assertions have identical syntactic structures as
the correct ones but with several inconsistent special tokens
(e.g., invoked-method names, variable names, or constant
values). Therefore, the current 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 mainly considers
the replacement operation during adaptation. We believe
that 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 can be further extended with more edition
operations (e.g., addition or deletion) in future work.

Listing 3: A false TAP example in the test set
//focal -test:
should_build_an_entity_with_the_right_name (){

builder.setName("name") ;
org.bonitasoft.engine.identity.model.SCustomUserInfoDefinition

entity=builder.done();
}
getName (){

return name;
}
// Assertion:
org.junit.Assert.assertEquals("name", entity.getName ())

Listing 4: A false TAP example in the training set
//focal -test:
should_build_an_entity_with_the_right_id () {

builder.setId(1L) ;
org.bonitasoft.engine.identity.model.SCustomUserInfoDefinition

entity=builder.done();
}
getId(){

return id;
}
// Assertion:
org.junit.Assert.assertEquals (1L, entity. getId())
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Algorithm 2 Retrieved-Assertion Adaptation 𝑅𝐴𝑎𝑑𝑎𝑝𝑡
Input: 𝑡 : the focal-test to adapt assertion for.
Input: 𝑡𝑖𝑟 : the focal-test retrieved by 𝐼𝑅𝑎𝑟 .
Input: 𝑎𝑖𝑟 : the assertion retrieved by 𝐼𝑅𝑎𝑟 .
Output: 𝑎′

𝑖𝑟
: the assertion adapted by 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 .

1: 𝐼𝑀𝑡 ,𝑉𝐴𝑅𝑡 ,𝐶𝑆𝑇𝑡 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑇𝑜𝑘𝑒𝑛𝑠 (𝑡)
2: 𝐼𝑀𝑡𝑖𝑟 ,𝑉𝐴𝑅𝑡𝑖𝑟 ,𝐶𝑆𝑇𝑡𝑖𝑟 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑇𝑜𝑘𝑒𝑛𝑠 (𝑡𝑖𝑟 )
3: 𝐼𝑀𝑎𝑖𝑟 ,𝑉𝐴𝑅𝑎𝑖𝑟 ,𝐶𝑆𝑇𝑎𝑖𝑟 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑇𝑜𝑘𝑒𝑛𝑠 (𝑎𝑖𝑟 )
4: 𝑎𝑑𝑎𝑝𝑡𝐼𝑀 ← 𝑛𝑒𝑒𝑑𝐴𝑑𝑎𝑝𝑡 (𝐼𝑀𝑡 , 𝐼𝑀𝑡𝑖𝑟 , 𝐼𝑀𝑎𝑖𝑟 )
5: 𝑎𝑑𝑎𝑝𝑡𝑉𝐴𝑅 ← 𝑛𝑒𝑒𝑑𝐴𝑑𝑎𝑝𝑡 (𝑉𝐴𝑅𝑡 ,𝑉𝐴𝑅𝑡𝑖𝑟 ,𝑉𝐴𝑅𝑎𝑖𝑟 )
6: 𝑎𝑑𝑎𝑝𝑡𝐶𝑆𝑇 ← 𝑛𝑒𝑒𝑑𝐴𝑑𝑎𝑝𝑡 (𝐶𝑆𝑇𝑡 ,𝐶𝑆𝑇𝑡𝑖𝑟 ,𝐶𝑆𝑇𝑎𝑖𝑟 )
7: if !𝑎𝑑𝑎𝑝𝑡𝐼𝑀 and !𝑎𝑑𝑎𝑝𝑡𝑉𝐴𝑅 and !𝑎𝑑𝑎𝑝𝑡𝐶𝑆𝑇 then
8: return 𝑎𝑖𝑟
9: 𝐼𝑀 ′𝑡𝑖𝑟 , 𝐼𝑀

′
𝑡 ← 𝑡𝑟𝑖𝑚(𝐼𝑀𝑡𝑖𝑟 , 𝐼𝑀𝑡 )

10: 𝑉𝐴𝑅′𝑡𝑖𝑟 ,𝑉𝐴𝑅
′
𝑡 ← 𝑡𝑟𝑖𝑚(𝑉𝐴𝑅𝑡𝑖𝑟 ,𝑉𝐴𝑅𝑡 )

11: 𝐶𝑆𝑇 ′𝑡𝑖𝑟 ,𝐶𝑆𝑇
′
𝑡 ← 𝑡𝑟𝑖𝑚(𝐶𝑆𝑇𝑡𝑖𝑟 ,𝐶𝑆𝑇𝑡 )

12: 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝐼𝑀 ← 𝑔𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝 (𝐼𝑀 ′𝑡 , 𝐼𝑀 ′𝑡𝑖𝑟 , 𝐼𝑀𝑎𝑖𝑟 )
13: 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝑉𝐴𝑅 ← 𝑔𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝 (𝑉𝐴𝑅′𝑡 ,𝑉𝐴𝑅′𝑡𝑖𝑟 ,𝑉𝐴𝑅𝑎𝑖𝑟 )
14: 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝐶𝑆𝑇 ← 𝑔𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝 (𝐶𝑆𝑇 ′𝑡 ,𝐶𝑆𝑇 ′𝑡𝑖𝑟 ,𝐶𝑆𝑇𝑎𝑖𝑟 )
15: 𝑎′

𝑖𝑟
← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑎𝑖𝑟 , 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝐼𝑀, 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝑉𝐴𝑅, 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝐶𝑆𝑇 )

16: return 𝑎′
𝑖𝑟

17: function 𝑛𝑒𝑒𝑑𝐴𝑑𝑎𝑝𝑡 (𝑇𝐾𝑡 , 𝑇𝐾𝑡𝑖𝑟 , 𝑇𝐾𝑎𝑖𝑟 )
18: 𝑛𝑒𝑒𝑑𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 ← 𝐹𝑎𝑙𝑠𝑒

19: for 𝑡𝑘𝑎𝑖𝑟 ∈ 𝑇𝐾𝑎𝑖𝑟 do
20: if 𝑡𝑘𝑎𝑖𝑟 ∉ 𝑇𝐾𝑡 and 𝑡𝑘𝑎𝑖𝑟 ∈ 𝑇𝐾𝑡𝑖𝑟 then
21: 𝑛𝑒𝑒𝑑𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 ← 𝑇𝑟𝑢𝑒

22: 𝑏𝑟𝑒𝑎𝑘

23: return 𝑛𝑒𝑒𝑑𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛

24: function 𝑔𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝(𝑇𝐾𝑡 , 𝑇𝐾𝑡𝑖𝑟 , 𝑇𝐾𝑎𝑖𝑟 )
25: 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝑀𝑎𝑝 ← 𝑑𝑖𝑐𝑡 ()
26: for 𝑡𝑘𝑡𝑖𝑟 ∈ (𝑇𝐾𝑡𝑖𝑟 ∩𝑇𝐾𝑎𝑖𝑟 ) do
27: 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 ← “”
28: 𝑚𝑎𝑥 ← 0
29: for 𝑡𝑘𝑡 ∈ 𝑇𝐾𝑡 do
30: 𝑡𝑒𝑚𝑝 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑡𝑘𝑡𝑖𝑟 , 𝑡𝑘𝑡 )
31: if 𝑡𝑒𝑚𝑝 >𝑚𝑎𝑥 then
32: 𝑚𝑎𝑥 ← 𝑡𝑒𝑚𝑝

33: 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 ← 𝑡𝑘𝑡

34: 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝑀𝑎𝑝 [𝑡𝑘𝑡𝑖𝑟 ] ← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒

35: return 𝑟𝑒𝑙𝑝𝑎𝑐𝑒𝑀𝑎𝑝

Algorithm 2 shows the details of 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 . In Lines 1-3, 𝑅𝐴𝑎𝑑𝑎𝑝𝑡
first extracts three categories of tokens (all the invoked methods,
variables, and constants) defined in 𝑡 , 𝑡𝑖𝑟 , and 𝑎𝑖𝑟 (the inputs to
𝑅𝐴𝑎𝑑𝑎𝑝𝑡 ), storing these tokens in nine sets. Separately processing
the categories of the invoked methods, variables, and constants
can make 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 more effective because there is no replacement
relationship across the three categories. For the example code frag-
ments in Listings 3 and 4, 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 extracts the nine sets of tokens:
𝐼𝑀𝑡 is [setName, getName, done], 𝑉𝐴𝑅𝑡 is [builder, entity, name],
and𝐶𝑆𝑇𝑡 is [“name”]; 𝐼𝑀𝑡𝑖𝑟 is [setId, getId, done],𝑉𝐴𝑅𝑡𝑖𝑟 is [builder,

entity, id], and 𝐶𝑆𝑇𝑡𝑖𝑟 is [1L]; 𝐼𝑀𝑎𝑖𝑟 is [getId], 𝑉𝐴𝑅𝑎𝑖𝑟 is [entity],
and 𝐶𝑆𝑇𝑎𝑖𝑟 is [1L].

Step 1. In Lines 4-8 and 17-23, 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 determines whether an
assertion (in the training set) retrieved by 𝐼𝑅𝑎𝑟 needs to be adapted.

The criterion for the need of adaptation is whether at least an
invoked-method in 𝐼𝑀𝑎𝑖𝑟 has not appeared in 𝐼𝑀𝑡 but appeared
in 𝐼𝑀𝑡𝑖𝑟 , at least a variable in 𝑉𝐴𝑅𝑎𝑖𝑟 has not appeared in 𝑉𝐴𝑅𝑡
but appeared in 𝑉𝐴𝑅𝑡𝑖𝑟 , or at least a constant in 𝐶𝑆𝑇𝑎𝑖𝑟 has not
appeared in 𝐶𝑆𝑇𝑡 but appeared in 𝐶𝑆𝑇𝑡𝑖𝑟 . For the example code
fragments in Listings 3 and 4, “getId” in 𝐼𝑀𝑎𝑖𝑟 has not appeared in
𝐼𝑀𝑡 and 1𝐿 in 𝐶𝑆𝑇𝑎𝑖𝑟 has not appeared in 𝐶𝑆𝑇𝑡 , so we need to do a
replacement analysis for “1L” and “getId”.

Step 2. Line 9 of the algorithm removes the overlapping elements
between 𝐼𝑀𝑡𝑖𝑟 and 𝐼𝑀𝑡 from each of these two sets, resulting in
𝐼𝑀 ′𝑡𝑖𝑟 and 𝐼𝑀 ′𝑡 , respectively. The elements in 𝐼𝑀 ′𝑡𝑖𝑟 are the tokens
(i.e., invoked methods here) that should be modified. Lines 10 and 11
do the same for the pair of𝑉𝐴𝑅𝑡𝑖𝑟 and𝑉𝐴𝑅𝑡 and the pair of𝐶𝑆𝑇𝑡𝑖𝑟
and 𝐶𝑆𝑇𝑡 , respectively. For the example code fragments, after the
overlapping elements are removed, 𝐼𝑀 ′𝑡𝑖𝑟 is [setId, getId], 𝐼𝑀 ′𝑡 is
[setName, getName];𝑉𝐴𝑅′𝑡𝑖𝑟 is [id],𝑉𝐴𝑅′𝑡 is [name];𝐶𝑆𝑇 ′𝑡𝑖𝑟 is [1L],
𝐶𝑆𝑇 ′𝑡 is [“name”].

Step 3. In Lines 12-14, 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 selects all the replacement values
for invoked methods, variables, and constants; the selection is based
on one of the two strategies described in Sections 3.2.1 and 3.2.2. In
Lines 15-16, the algorithm replaces the invoked methods, variables,
and constants in 𝑎𝑖𝑟 to be replaced and returns the adapted assertion
𝑎′
𝑖𝑟
.
For Step 3, we design two replacement strategies to decide the

replacement value: one is based on heuristics (denoted as 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

)

and the other one is based on neural networks (denoted as 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

).
We then introduce these strategies in Sections 3.2.1 and 3.2.2.
3.2.1 Heuristics-based strategy𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
. In function𝑔𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝 ,

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 of𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

is calculated based on the sub-tokens
resulted from hump splitting of 𝑡𝑘𝑡𝑖𝑟 in 𝑇𝐾𝑡𝑖𝑟 and 𝑡𝑘𝑡 in 𝑇𝐾𝑡 and
the positions of 𝑡𝑘𝑡𝑖𝑟 and 𝑡𝑘𝑡 . We first determine whether 𝑡𝑘𝑡𝑖𝑟 and
𝑡𝑘𝑡 contain the same sub-tokens resulted from camel case splitting.
If 𝑡𝑘𝑡𝑖𝑟 and 𝑡𝑘𝑡 contain the same sub-tokens after camel case split-
ting, we put 𝑡𝑘𝑡 to a candidate set. Then we select the replacement
value according to the positions of 𝑡𝑘𝑡𝑖𝑟 in 𝑇𝐾𝑡𝑖𝑟 and 𝑡𝑘𝑡 in 𝑇𝐾𝑡 .
Here we select the token 𝑡𝑘𝑡 that is closest to the position of token
𝑡𝑘𝑡𝑖𝑟 . For example, “getId” in Listing 4 needs to be respectively com-
pared with “setName” and “getName” in Listing 3. The camel case
of “getId” is split into “get” and “Id”, the camel case of “getName”
is split into “get” and “Name”, and the camel case of “setName”
is split into “set” and “Name”. The position of “getId” in 𝑡𝑖𝑟 is 34,
the position of “getName” in 𝑡 is 34, and the position of “setName”
in 𝑡 is 7. Therefore, “getId” will be replaced with “getName”. The
constant 1𝐿 in Listing 4 needs to be replaced, and 𝐶𝑆𝑇 ′𝑡𝑖𝑟 has only
one element “name”, so “1L” is directly replaced with “name”.
3.2.2 Neural-network-based strategy𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
. The heuristic-based

strategy 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

performs replacement based on lexical similarity,
which might ignore semantic information embedded in programs.
We then propose another neural-network-based replacement strat-
egy𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
, which augments lexical similarity with semantic infor-

mation and calculates the replacement value via a neural network
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architecture for code adaptation. 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

consists of three compo-
nents: (1) embedding first-order semantic information, (2) enriching
first-order information with high-order semantic information, and
(3) combining semantic information with the aforementioned lexi-
cal similarity.

In the first component, 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

captures the first-order informa-
tion with Word2Vec [1], which maps each word to a n-dimensional
vector space R. We use a𝑚×𝑛 matrix𝑀 for this semantic mapping,
where 𝑚 denotes the size of vocabulary (a vocabulary typically
refers to a set of unique tokens used in the text corpus).

The second component captures high-order information by in-
jecting the semantics of context into the current token. In particular,
we employ a bidirectional recurrent neural network architecture
(Bi-RNA), which delivers information forward and backward simul-
taneously. At every step, Bi-RNA updates the representation of the
current token 𝐼𝑖 with its forward and backward context, enrich-
ing 𝐼𝑖 ’s initial first-order information with high-order information.
Here 𝑅 is the recurrent algorithm used to update information, and
𝐼𝑅
𝑖
is the output of semantic enhancement of 𝐼𝑖 .

𝐼𝑅𝑖 = [𝑅> (𝐼𝑖 , 𝐼𝑖−1...0), 𝑅< (𝐼𝑖 , 𝐼𝑖+1...𝑙 )]

At last, we use a linear layer to combine semantic similarity
with the lexical similarity. The semantic similarity is calculated
with cosine coefficient, and the cosine coefficient between more
similar tokens is larger. In Line 30 of Algorithm 2, we employ dot
production to calculate the cosine coefficient between the tokens
for replacing 𝐼𝑅𝑡𝑖𝑟

𝑖
of 𝑡𝑘𝑡𝑖𝑟 and its candidate 𝐼𝑅𝑡

𝑖
of 𝑡𝑘𝑡 (in function

𝑔𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝) as the following equation. Here 𝑆 denotes the
replacement score of 𝑡𝑘𝑡𝑖𝑟 and 𝑡𝑘𝑡 . 𝑝1 and 𝑝2 are the parameters
trained by 𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
.

𝑆 =

{
𝑝1 · 𝐼𝑅𝑡𝑖𝑟

𝑖
· 𝐼𝑅𝑡
𝑖
+ 𝑝2 𝐼

𝑅𝑡𝑖𝑟
𝑖

and 𝐼𝑅𝑡
𝑖

contain same sub-token(s)
𝑝1 · 𝐼𝑅𝑡𝑖𝑟

𝑖
· 𝐼𝑅𝑡
𝑖

otherwise
(1)

𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

is optimized by maximizing the negative log-likelihood
on the replacement possibility 𝑆 .

3.3 Integration
An IR-based approach retrieves assertions from the training set,
and could be highly effective especially when there are similar cases
in the training set. On the other hand, a DL-based approach learns
to generate assertions based on the training set and is capable of
generating “new” assertions absent from the training set. Intuitively,
these two approaches are complementary and thus could be fur-
ther combined to enable more powerful generation of assertions.
In this section, we propose an integration approach based on a
compatibility inference model, which calculates the “compatibility”
between the retrieved assertion and the current focal-test to deter-
mine whether to directly return the retrieved assertion or apply a
DL-based approach to generate a new assertion.

Figure 1 presents the workflow of our integration approach. The
first two steps are our proposed IR-based approach (including the
techniques of 𝐼𝑅𝑎𝑟 and𝑅𝐴𝑎𝑑𝑎𝑝𝑡 ), which retrieves an assertion based
on the Jaccard similarity and adapts the retrieved assertion if nec-
essary. After adaptation, we then employ a semantic compatibility

inference model to calculate the compatibility of the adapted as-
sertion. If the compatibility is lower than the specified threshold
(denoted as 𝑡 in Figure 1), we turn to the DL-based approach (e.g.,
ATLAS) for generating a “new” assertion. In our approach, 𝑡 is
decided based on the validation set.

We next introduce our compatibility inference model in detail.
Recall that the adaptation technique deals with syntactic compat-
ibility by replacing incorrect tokens. We further utilize semantic
compatibility to find an incompatible assertion. This problem is
similar to the task of neural language inference (NLI) [9], which is
usually solved with a binary neural inference model. Typically, a
binary neural inference model reasons about evidence between the
hypothesis and premise to infer their relationship (i.e., entailment
or contradiction). However, our problem is different, where the
relationship is “ternary” rather than “binary”. Since the assertion is
retrieved from its training focal-test, an inference model should not
only consider the compatibility between the retrieved assertion and
the input focal-test, but also consider the compatibility between
the retrieved focal-test and the input focal-test. Based on this in-
sight, we propose a “ternary” neural inference model, which could
be viewed as an extension of a recently proposed binary neural
inference model named ESIM [9]. We model the local evidence of
compatibility among the retrieved assertion, the retrieved focal-test,
and the input focal-test with an attention-based RNN model. We
then combine the evidence from three code sequences with a neural
network, which maps evidence features to the final compatibility.

4 EXPERIMENTAL SETUP
In this section, we describe datasets and metrics used in our ex-
periments. Our source code, datasets, and experimental results are
available on our project website [2]. We conduct experiments to
answer the following research questions:

• RQ1: How does the proposed IR-based assertion retrieval
technique 𝐼𝑅𝑎𝑟 perform compared to the latest DL-based
assertion generation approach (i.e., ATLAS)?
• RQ2: How do the proposed retrieved-assertion adaptation
techniques 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
and 𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
improve the effectiveness?

• RQ3: How does the proposed integration approach boost
DL-based and IR-based approaches?

4.1 Datasets
4.1.1 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 . We denote the original dataset used by ATLAS as
𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , which consists of real-world test assertions from open-
source projects in GitHub. As mentioned in previous work [49],
𝐷𝑎𝑡𝑎𝑜𝑙𝑑 is constructed in a simplified way: it excludes the assertions
that contain tokens absent from the focal-test and the vocabulary.
Such tokens are called unknown tokens according to the common
practice in natural language processing [34, 55]. For example, in
Listing 5, the tokens voter and voteMatch are unknown tokens
that do not appear in the focal-test or the vocabulary. 𝐷𝑎𝑡𝑎𝑜𝑙𝑑
excludes such cases, and in total contains 156,760 data items, which
are further divided into training, validation, and test sets by the
ratio of 8:1:1.



Automated Assertion Generation via Information Retrieval and Its Integration with Deep Learning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

2XWSXW
&RPSDWLELOLW\�

)RFDO�WHVW

)RFDO�WHVWV�DQG�$VVHUWLRQV
LQ�7UDLQLQJ�6HW

5HWULHYHG�
)RFDO�WHVW�
5HWULHYHG�
$VVHUWLRQ�

$GDSWDWLRQ
$QDO\VLV

6LPLODULW\
&DOFXODWLRQ

1HHG�
$GDSW�

"

$GDSWDWLRQ

)RFDO�WHVW
5HWULHYHG

)RFDO�WHVW

$VVHUWLRQ
5HWULHYHG

UHSODFH

JHW1DPH

� �

� �

HQWLW\ �

JHW,G

JHW1DPH

JHW,G

<HV

$GDSWHG�
$VVHUWLRQ1R

6HPDQWLF�&RPSDWLELOLW\�,QIHUHQFH

ZLWK

ULJKW ,G

ULJKW QDPH

HQWLW\ �

ZLWK

JHW1DPH

(YLGHQFH
0DSSLQJ

(YLGHQFH
,QIHULQJ

'/�EDVHG�$VVHUWLRQ�*HQHUDWRQ

8VH�5HWULHYHG�$VVHUWLRQ

5HWULHYDO $GDSWDWLRQ ,QWHJUDWLRQ

*HQHUDWHG�
$VVHUWLRQ

$GDSWHG
$VVHUWLRQ

S���W

S�

S�߽�W

Figure 1: Workflow of the integration approach

4.1.2 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 . In fact,𝐷𝑎𝑡𝑎𝑜𝑙𝑑 simplifies the test generation prob-
lem by excluding some challenging cases (i.e., assertions with un-
known tokens) for generation. Therefore, it may fail to represent
real-world data distribution and threaten the validity of experi-
mental results. Therefore, in this work, we further construct an
extended dataset (i.e., denoted as 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 ) based on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 by
adding those excluded cases with unknown tokens back to 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 .
In addition to the original 156,760 items in 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 con-
sists of 108,660 extra items with unknown tokens. In total, the newly
constructed dataset 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 contains 265,420 data items, which
are also further divided into training, validation, and test sets by
the ratio of 8:1:1.

Listing 5: An example of assertion with unknown tokens
//focal -test:
void voteMatch_match_exact_single_sectioned_many_orgs (){

affiliation.setOrganizationName("philipps␣universitat␣marburg");
resetOrgNames("some␣other␣inst","philipps␣universitat␣marburg");

}
void resetOrgNames(String ... orgNames){

Mockito.when(getOrgNamesFunction.apply(organization)).thenReturn
(Lists.newArrayList(orgNames));

}
// Assertion:
assertTrue(voter.voteMatch(affiliation , organization));

Table 1 shows the detailed statistics of 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 and 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 ,
including their distribution over different assertion types.

4.2 Metrics
In line with previous work [49], we use the following metrics in
our experiments.

4.2.1 Accuracy. We mainly use accuracy to evaluate the effective-
ness of assertion generation techniques. In particular, only the
assertion that is the same with the ground truth would be consid-
ered as accurate. Accuracy calculates the ratio of accurate assertions
to all the generated assertions.

4.2.2 BLEU. Following previous work [49], we use the muti-BLEU
score to evaluate the similarity of generated assertions with the
ground truth. BLEU [38] has been widely used in machine transla-
tion systems [4, 19, 21, 27, 33]. The score first calculates themodified
n-gram (for BLEU-n, n=1,2,3,4) precision of a candidate sequence
(i.e., generated assertions) to the reference message (i.e., the ground
truth), and then measures the average modified n-gram precision
with a penalty for overly short sentences.

5 EXPERIMENTAL RESULTS
Tables 2 and 3 present the overall effectiveness (i.e., accuracy and
BLEU) of all techniques studied in the experiments, including the
compared baseline (i.e., ATLAS), 𝐼𝑅𝑎𝑟 , two adaptation techniques
𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
/𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
, and the integration approach.

5.1 RQ1: Effectiveness of 𝐼𝑅𝑎𝑟

5.1.1 Overall effectiveness of 𝐼𝑅𝑎𝑟 . As shown in Tables 2 and 3,
the proposed 𝐼𝑅𝑎𝑟 technique substantially outperforms the com-
pared DL-based approach ATLAS on both datasets in terms of both
accuracy and BLEU. In addition, we can observe that the differ-
ence is much more prominent on the more challenging dataset (i.e.,
𝐷𝑎𝑡𝑎𝑛𝑒𝑤 with unknown tokens). The reason might be that existing
DL-based approaches may have a weaker capability of generating
assertions with unknown tokens and thus perform substantially
worse on 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 (i.e., almost 10% drop in accuracy).

Effectiveness on different assertion types. We further compare the
effectiveness of 𝐼𝑅𝑎𝑟 and ATLAS on assertions of different types.
Each column in Table 4 represents the assertion type, and each
cell presents the number of correct generated assertions and the
corresponding proportions in the brackets. As shown in the table,
we observe that 𝐼𝑅𝑎𝑟 could consistently outperform ATLAS on all
the assertion types, indicating the generality of 𝐼𝑅𝑎𝑟 in generating
different assertions.

Effectiveness with different similarity coefficients. 𝐼𝑅𝑎𝑟 uses Jac-
card as its default similarity coefficient. We investigate the impact
of different IR similarity coefficients on the effectiveness of 𝐼𝑅𝑎𝑟 . In
particular, we implement two other variants of 𝐼𝑅𝑎𝑟 with twowidely
used similarity coefficients, Overlap [51] and Dice [12], which com-
pute the similarity of two given sets (i.e., 𝑋 and 𝑌 ) as follows.

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑋,𝑌 ) = |𝑋 ∩ 𝑌 |/𝑚𝑖𝑛( |𝑋 |, |𝑌 |)
𝐷𝑆𝐶 (𝑋,𝑌 ) = |𝑋 ∩ 𝑌 |/( |𝑋 | + |𝑌 |)

Table 5 presents the accuracy of 𝐼𝑅𝑎𝑟 with different similarity co-
efficients on both datasets. The results show that the similarity
coefficients have little impact on the effectiveness of 𝐼𝑅𝑎𝑟 , indicat-
ing the generality of the 𝐼𝑅𝑎𝑟 family in assertion generation.

In summary, our results suggest that the proposed 𝐼𝑅𝑎𝑟 approach
outperforms the existing DL-based approach ATLAS, including on
different assertion types and with different IR similarity coefficients.
To further understand these results, we next analyze their successful
and unsuccessful cases in Sections 5.1.2 and 5.1.3, respectively.
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Table 1: Detailed statistics of each type in 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 and 𝐷𝑎𝑡𝑎𝑛𝑒𝑤

AssertType Total Equals True That NotNull False Null ArrayEquals Same other

𝐷𝑎𝑡𝑎𝑜𝑙𝑑 15,676 7,866(50%) 2,783(18%) 1,441(9%) 1,162(7%) 1,006(6%) 798(5%) 307(2%) 311(2%) 2(0%)
𝐷𝑎𝑡𝑎𝑛𝑒𝑤 26,542 12,557(47%) 3,652(14%) 3,532(13%) 1,284(5%) 1071(4%) 735(3%) 362(1%) 319(1%) 3,030(11%)

Table 2: Accuracy of 𝐼𝑅𝑎𝑟 , 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

, 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

, and integration

Dataset
Approach ATLAS 𝐼𝑅𝑎𝑟 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
integration

𝐷𝑎𝑡𝑎𝑜𝑙𝑑 31.42 36.26 40.97 43.63 46.54
𝐷𝑎𝑡𝑎𝑛𝑒𝑤 21.66 37.90 39.65 40.53 42.20

Table 3: Muti-BLEU of 𝐼𝑅𝑎𝑟 , 𝑅𝐴𝐻𝑎𝑑𝑎𝑝𝑡 , 𝑅𝐴
𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

, and integration

Dataset
Approach ATLAS 𝐼𝑅𝑎𝑟 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
integration

𝐷𝑎𝑡𝑎𝑜𝑙𝑑 68.51 71.48 73.28 73.95 78.86
𝐷𝑎𝑡𝑎𝑛𝑒𝑤 37.91 57.98 59.81 59.81 60.92

5.1.2 Correct generated assertions. To further investigate the cor-
rect assertions generated by 𝐼𝑅𝑎𝑟 and ATLAS, we compare the
length of correct assertions (i.e., the number of tokens in each as-
sertion). Figure 2 shows the distribution of the length of correct
generated assertions, where the X axis represents the length of
assertions and the Y axis represents the number of corresponding
assertions. Interestingly, as shown in the figure, we can observe
that 𝐼𝑅𝑎𝑟 tends to outperform ATLAS on longer assertions. For
example, on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , ATLAS is more effective than 𝐼𝑅𝑎𝑟 when
the target assertion contains fewer than eight tokens, whereas AT-
LAS becomes less effective than 𝐼𝑅𝑎𝑟 when the target assertion
contains more than eight tokens. We also observe similar trends
on 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 : although 𝐼𝑅𝑎𝑟 is always more effective than ATLAS,
their difference is more prominent with the increasing length of
assertions. To further confirm our observation, we then calculate
the average lengths of the correct assertions generated by ATLAS
and 𝐼𝑅𝑎𝑟 , respectively. On 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , the average lengths of the cor-
rect assertions generated by ATLAS and 𝐼𝑅𝑎𝑟 are 7.98 and 8.63,
respectively; on 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 , the average lengths of ATLAS and 𝐼𝑅𝑎𝑟
are 9.74 and 10.74, respectively. Our results suggest that 𝐼𝑅𝑎𝑟 has
a stronger capability of generating correct long assertions than
ATLAS. One potential reason may be that it is still very challenging
for existing DL-based approaches to generate long sequences from
scratch while it is feasible for IR-based approaches to retrieve long
sequences from existing data. In addition, our results also indicate
the complementarity between DL-based and IR-based approaches,
especially for assertions of different lengths, also motivating the
combination of these two approach categories for more powerful
assertion generation.

We further look into the correct assertions generated by ATLAS.
Interestingly, we find most of them exist in the training set. More
specifically, in 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , among 4,925 correct assertions that can be
generated by ATLAS, 4,560 (92.59%) assertions exist in the training

Figure 2: Length distribution of correct assertions

set if the abstraction strategy is applied. Recall that the abstrac-
tion strategy in ATLAS replaces specific tokens (e.g., identifiers
and variable names) with abstract tokens to reduce the infrequent
tokens and the size of the vocabulary. Similarly, in 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 , we
also observe that the majority of correct generated assertions (i.e.,
98.76%) are the assertions existing in the training set. Intuitively,
the strength of DL-based approaches over IR-based approaches lies
in intelligently creating new assertions that have never appeared
in the training set. However, our results show that most assertions
generated by ATLAS exist in the training set while only a few cor-
rect assertions are new and “created” by ATLAS. The preceding
observation explains why even a simplistic IR approach can outper-
form a DL-based approach, also suggesting the limited capability
of existing DL-based assertion generation in generating correct
assertions.
5.1.3 Incorrect generated assertions. We then look into the asser-
tions that cannot be successfully generated by ATLAS or 𝐼𝑅𝑎𝑟 . In
particular, we calculate the edit distance between the incorrect
generated assertions and the labeled assertions (i.e., the ground
truth) in Table 6. Interestingly, although there are a large number of
assertions that cannot be successfully generated by ATLAS or 𝐼𝑅𝑎𝑟 ,
a considerable ratio of these incorrect generated assertions are very
similar to the correct ones, i.e., their edit distance is rather small.
For example, among the 10,751 and 20,793 incorrect assertions gen-
erated by ATLAS on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 and 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 , respectively, 2,840 (i.e.,
26.4%) and 2,641 (i.e., 12.7%) assertions have only one different token
from the correct assertions, while 4,517 (i.e., 42.0%) and 5,731 (i.e.,
27.6%) assertions have no more than three different tokens from the
correct assertions. Similarly, among the 9,992 and 14,483 incorrect
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Table 4: Detailed statistics of ATLAS and 𝐼𝑅𝑎𝑟 for each assert type

Approach
AssertType Total Equals True That NotNull False Null ArrayEquals Same Other

ATLAS-𝐷𝑎𝑡𝑎𝑜𝑙𝑑 4,925(31%) 2,501(32%) 966(35%) 248(17%) 598(51%) 229(23%) 236(30%) 100(33%) 47(15%) 0(0%)
𝐼𝑅𝑎𝑟 -𝐷𝑎𝑡𝑎𝑜𝑙𝑑 5,684(36%) 2,957(38%) 1,039(37%) 449(31%) 439(38%) 314(31%) 285(36%) 111(36%) 89(29%) 1(50%)

ATLAS-𝐷𝑎𝑡𝑎𝑛𝑒𝑤 5,749(22%) 2,900(23%) 619(17%) 537(15%) 388(30%) 126(12%) 85(12%) 47(13%) 37(12%) 1,010(33%)
𝐼𝑅𝑎𝑟 -𝐷𝑎𝑡𝑎𝑛𝑒𝑤 10,059(38%) 4,664(37%) 1,436(39%) 1,070(30%) 600(47%) 394(37%) 286(39%) 147(41%) 113(35%) 1,349(45%)

Table 5: Accuracy of different similarity coefficients

Dataset
Approach Jaccard DICE Overlap

𝐷𝑎𝑡𝑎𝑜𝑙𝑑 36.26 36.26 36.12
𝐷𝑎𝑡𝑎𝑛𝑒𝑤 37.90 37.90 37.74

assertions retrieved by 𝐼𝑅𝑎𝑟 on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 and 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 , respectively,
2,966 (i.e., 29.7%) and 4,532 (i.e., 31.3%) assertions have only one
different token from the correct assertions, while 4,736 (i.e., 47.4%)
and 7,535 (i.e., 52.0%) assertions have no more than three different
tokens from the correct assertions.

Inspired by the preceding observation, we further categorize
those incorrect generated assertions whose edit distance is only
one token away from the correct assertions, according to the type
of the incorrect token. Table 7 presents the number of assertions
in each token category. From the table, we can find that a majority
of incorrect assertions generated by ATLAS or 𝐼𝑅𝑎𝑟 have a wrong
constant value compared to the correct assertions, indicating that
generating constant values can be a major challenge in assertion
generation. Such a challenge is not surprising, since the candidate
space of a constant value is often very large, making it challenging
to predict a constant value correctly. In addition, we can also find
that a considerable number of assertions are incorrect because their
assertion types are incorrect. For example, on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , 738 (677)
incorrect assertions generated by ATLAS (𝐼𝑅𝑎𝑟 ) can be modified
into correct assertions if their assertion types are fixed. Compared
to incorrect constant values, fixing incorrect assertion types is
often less challenging, since fixing types has a limited number of
enumerations.

In summary, a considerable number of incorrect assertions gen-
erated by ATLAS and 𝐼𝑅𝑎𝑟 are very similar to correct assertions,
and these incorrect assertions can still be helpful to developers or
provide useful information for assertion generation. In addition,
many incorrect assertions may become correct after only one token
(e.g., related to assertion type) is modified. Furthermore, our results
also motivate the intuition of our adaptation technique.

5.2 RQ2: Effectiveness of 𝑅𝐴𝑎𝑑𝑎𝑝𝑡

In Table 8, Column “Total” shows the overall accuracy of 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

and 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 and 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 . We can find that both adap-

tation techniques can substantially improve 𝐼𝑅𝑎𝑟 , and 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

can

achieve higher improvement than 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

. For example, 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

and 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

improve 𝐼𝑅𝑎𝑟 by 4.71% and 7.37% on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , while

Table 6: Edit distance between correct assertions and incor-
rect assertions generated by ATLAS and 𝐼𝑅𝑎𝑟

Dataset
Edit 1 2 3

ATLAS-𝐷𝑎𝑡𝑎𝑜𝑙𝑑 2,840(26%) 763(7%) 914(9%)
𝐼𝑅𝑎𝑟 -𝐷𝑎𝑡𝑎𝑜𝑙𝑑 2,966(30%) 1,198(12%) 572(6%)

ATLAS-𝐷𝑎𝑡𝑎𝑛𝑒𝑤 2,614(13%) 1,595(8%) 1,522(7%)
𝐼𝑅𝑎𝑟 -𝐷𝑎𝑡𝑎𝑛𝑒𝑤 4,532(31%) 1,912(13%) 1,091(8%)

Table 7: Token types to be modified within one edit distance

Dataset
Token total api variable constant assertType

ATLAS-𝐷𝑎𝑡𝑎𝑜𝑙𝑑 2,840 27 865 1,171 738
𝐼𝑅𝑎𝑟 -𝐷𝑎𝑡𝑎𝑜𝑙𝑑 2,966 145 998 1,042 677

ATLAS-𝐷𝑎𝑡𝑎𝑛𝑒𝑤 2,614 225 482 1,051 274
𝐼𝑅𝑎𝑟 -𝐷𝑎𝑡𝑎𝑛𝑒𝑤 4,532 448 1,014 2,100 395

1.75% and 2.63% on 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 , respectively. In addition, 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

(𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

) can further outperform the DL-based approach ATLAS
substantially, i.e., 9.55% (12.21%) improvement on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 and
17.99% (18.87%) improvement on 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 . Furthermore, the other
columns in Table 8 present the effectiveness of adaptation on asser-
tions of different types. From the table, we can observe a consistent
improvement of both adaptation techniques on all the assertion
types.

We further analyze the successful and unsuccessful cases of
our adaptation techniques. In particular, we find that on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 ,
419 and 737 incorrect retrieved assertions are modified into cor-
rect assertions by 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
and 𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
, respectively; similarly, on

𝐷𝑎𝑡𝑎𝑛𝑒𝑤 , 563 and 679 incorrect retrieved assertions are modified
into correct ones by 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
and 𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
, respectively. On the

other hand, our adaptation techniques are likely to modify a correct
assertion into an incorrect one. On 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , a small number of
correct retrieved assertions (i.e., 25 and 42) are mistakenly identi-
fied by 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
and 𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
, respectively, as incorrect assertions

and further modified into incorrect assertions, and the numbers on
𝐷𝑎𝑡𝑎𝑛𝑒𝑤 are 68 and 84. In summary, our adaptation techniques suc-
cessfully modify a considerable number of incorrect assertions into
correct ones at the cost of mistakenly modifying a small number of
correct retrieved assertions, explaining the overall effectiveness of
adaptation.
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Table 8: Detailed statistics of 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

and 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

for each assert type

Approach
AssertType Total Equals True That NotNull False Null ArrayEquals Same Other

𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

-𝐷𝑎𝑡𝑎𝑜𝑙𝑑 6,423(41%) 3,300(42%) 1,151(41%) 536(37%) 553(48%) 335(33%) 316(40%) 120(39%) 111(36%) 1(50%)
𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
-𝐷𝑎𝑡𝑎𝑜𝑙𝑑 6,839(44%) 3,509(45%) 1,225(44%) 551(38%) 610(52%) 342(34%) 341(43%) 134(44%) 126(41%) 1(50%)

𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

-𝐷𝑎𝑡𝑎𝑛𝑒𝑤 10,525(40%) 4,882(39%) 1,487(41%) 1,142(32%) 651(51%) 403(38%) 297(40%) 154(43%) 121(38%) 1,388(46%)
𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
-𝐷𝑎𝑡𝑎𝑛𝑒𝑤 10,758(41%) 4,988(40%) 1,526(42%) 1,161(33%) 691(54%) 401(37%) 308(42%) 162(45%) 126(39%) 1,395(46%)

Table 9: Detailed statistics of integration for each assert type

Approach
AssertType Total Equals True That NotNull False Null ArrayEquals Same Other

integration-𝐷𝑎𝑡𝑎𝑜𝑙𝑑 7,295(47%) 3,714(47%) 1,333(48%) 546(38%) 724(62%) 348(35%) 352(44%) 148(48%) 129(41%) 1(50%)
integration-𝐷𝑎𝑡𝑎𝑛𝑒𝑤 11,201(42%) 5,248(42%) 1,566(43%) 1,196(34%) 711(55%) 401(37%) 313(43%) 162(45%) 128(40%) 1,476(49%)

(a) 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

(b) 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

Figure 3: Complementarity between ATLAS, 𝐼𝑅𝑎𝑟 , 𝑅𝐴𝐻𝑎𝑑𝑎𝑝𝑡 ,

and 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

in 𝐷𝑎𝑡𝑎𝑜𝑙𝑑

(a) 𝑅𝐴𝐻
𝑎𝑑𝑎𝑝𝑡

(b) 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

Figure 4: Complementarity between ATLAS, 𝐼𝑅𝑎𝑟 , 𝑅𝐴𝐻𝑎𝑑𝑎𝑝𝑡 ,

and 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

in 𝐷𝑎𝑡𝑎𝑛𝑒𝑤

5.3 RQ3: Effectiveness of Integration
5.3.1 Complementarity between DL-based and IR-based approaches.
Figures 3 and 4 present the overlapping between the correct asser-
tions generated by the DL-based approach (i.e., ATLAS) and the
IR-based approaches (i.e., 𝐼𝑅𝑎𝑟 and 𝑅𝐴𝑎𝑑𝑎𝑝𝑡 ). From the figures, we
can find that DL-based and IR-based approaches are complemen-
tary. For example, on 𝐷𝑎𝑡𝑎𝑜𝑙𝑑 , between ATLAS and 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
, 1,525

correct assertions are uniquely generated by ATLAS, while 3,035
correct assertions are uniquely generated by 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
; between AT-

LAS and 𝑅𝐴𝑁𝑁
𝑎𝑑𝑎𝑝𝑡

, 1,356 correct assertions are uniquely generated
by ATLAS, while 3,300 correct assertions are uniquely generated by
𝑅𝐴𝑁𝑁

𝑎𝑑𝑎𝑝𝑡
. Such a complementarity is consistent on 𝐷𝑎𝑡𝑎𝑛𝑒𝑤 . The

results indicate that integrating both approaches can even enable
more powerful assertion generation.

5.3.2 Effectiveness of integration. Table 9 presents the effectiveness
of integration on all assertions and assertions of each type. From
the table, we can observe that integration consistently outperforms
DL-based and IR-based approaches on all assertions. The results
suggest the effectiveness of our proposed integration approach, also
showing that integrating DL-based and IR-based approaches can
be a promising direction for automated assertion generation.

6 THREATS TO VALIDITY
One major threat in our work comes from not comparing the abil-
ity to generate assertions that are compilable and can find bugs
between our approaches and other existing approaches of test
case generation. Although being compilable can be another in-
dicator for assertion quality, automated build has always been a
challenging task, highly dependent on external/internal settings/re-
sources [17, 28]. Therefore, it is challenging to automatically com-
pile large-scale subjects. To ensure the scale of our experiments,
we do not use being compilable and the ability to find bugs as met-
rics. Note that we check the syntax of assertions generated by our
IR-based approach, and all the generated assertions conform to the
syntax. These results are expected since the retrieval mechanism
of our IR-based approach can ensure the syntactic correctness of
the generated assertions.
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7 CONCLUSION
In this paper, we have made the first attempt to leverage Informa-
tion Retrieval (IR) in assertion generation and propose an IR-based
approach including the technique of 𝐼𝑅𝑎𝑟 and the technique of
𝑅𝐴𝑎𝑑𝑎𝑝𝑡 . We have also proposed an integration approach for inte-
grating our IR-based approach and a DL-based approach such as
ATLAS to further improve the effectiveness. Our experimental re-
sults have shown that ATLAS can be outperformed by 𝐼𝑅𝑎𝑟 , which
achieves the accuracy of 36.26% and 37.90% on two datasets, respec-
tively. Moreover, our 𝑅𝐴𝐻

𝑎𝑑𝑎𝑝𝑡
technique can help achieve accuracy

of 43.63% and 40.53% on both datasets, respectively. Finally, the in-
tegration approach achieves the accuracy of 46.54% and 42.20% on
both datasets. Our work has conveyed an important message that
an IR-based approach can be competitive and worthwhile to pursue
for software engineering tasks such as assertion generation, and
should be seriously considered by the research community given
that in recent years DL solutions have been over-popularly adopted
by the research community for software engineering tasks.

ACKNOWLEDGMENTS
This work was partially supported by National Natural Science
Foundation of China (Grant No. 62161146003, 62072007, 62192733), a
grant from Huawei, and the Tencent Foundation/XPLORER PRIZE.

REFERENCES
[1] 2013. Word2vec embeddings. https://radimrehurek.com/gensim/models/

word2vec.html.
[2] 2022. https://github.com/yh1105/Artifact-of-Assertion-ICSE22.
[3] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-

felds. 2017. An Industrial Evaluation of Unit Test Generation: Finding Real Faults
in A Financial Application. In Proceedings of the 39th IEEE/ACM International Con-
ference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP).
263–272. https://doi.org/10.1109/ICSE-SEIP.2017.27

[4] Fan Angela, Bhosale Shruti, Schwenk Holger, Ma Zhiyi, El-Kishky Ahmed, Goyal
Siddharth, Baines Mandeep, Celebi Onur, Wenzek Guillaume, Chaudhary Vishrav,
Goyal Naman, Birch Tom, Liptchinsky Vitaliy, Edunov Sergey, Grave Edouard,
Auli Michael, and Joulin Armand. 2021. Beyond English-Centric Multilingual
Machine Translation. Journal of Machine Learning Research 22 (2021), 107:1–
107:48.

[5] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. 2002. Recovering
Traceability Links Between Code and Documentation. IEEE Transactions on
Software Engineering 28, 10 (2002), 970–983. https://doi.org/10.1109/TSE.2002.
1041053

[6] Dave Astels. 2003. Test Driven Development: A Practical Guide. Prentice Hall
Professional Technical Reference.

[7] Kent Beck. 2003. Test-driven Development: By Example. Addison-Wesley Profes-
sional; 1st edition (November 8, 2002).

[8] Pietro Braione, Giovanni Denaro, and Mauro Pezzè. 2016. JBSE: A Symbolic
Executor for Java Programs with Complex Heap Inputs. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE). 1018–1022. https://doi.org/10.1145/2950290.2983940

[9] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen.
2017. Enhanced LSTM for Natural Language Inference. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (ACL). 1657–1668.
https://doi.org/10.18653/v1/P17-1152

[10] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2021. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE Transactions on Software Engi-
neering 47, 9, 1943–1959. https://doi.org/10.1109/TSE.2019.2940179

[11] Mike Cohn. 2010. Succeeding with Agile: Software Development Using Scrum (1st
ed.). Addison-Wesley Professional; 1st edition (October 26, 2009).

[12] Lee R. Dice. 1945. Measures of the Amount of Ecologic Association Between
Species. Ecological Society of America (1945).

[13] Robert B. Evans and Alberto Savoia. 2007. Differential Testing: A New Approach
to Change Detection. In Proceedings of the 6th Joint Meeting on European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering: Companion Papers (ESEC/FSE). 549–552. https://doi.org/10.
1145/1295014.1295038

[14] William B. Frakes and Kyo Kang. 2005. Software Reuse Research: Status and
Future. IEEE Transactions on Software Engineering 31, 7 (2005), 529–536. https:
//doi.org/10.1109/TSE.2005.85

[15] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE). 416–419. https://doi.org/10.1145/2025113.2025179

[16] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. 2019. A Survey of Methods for Explaining Black
Box Models. Comput. Surveys 51, 5 (2019), 93:1–93:42. https://doi.org/10.1145/
3236009

[17] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: An Automatic Approach
to History-Driven Repair of Build Scripts. In Proceedings of the 40th IEEE/ACM
International Conference on Software Engineering (ICSE). 1078–1089. https://doi.
org/10.1145/3180155.3180181

[18] Hideaki Hata, Emad Shihab, and Graham Neubig. 2018. Learning to Generate
Corrective Patches using Neural Machine Translation. CoRR abs/1812.07170
(2018).

[19] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep Code Comment
Generation. In Proceedings of the 26th International Conference on Program Com-
prehension (ICPC). 200–210. https://doi.org/10.1145/3196321.3196334

[20] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep Code Comment
Generation with Hybrid Lexical and Syntactical Information. Empirical Software
Engineering 25, 3 (2020), 2179–2217. https://doi.org/10.1007/s10664-019-09730-9

[21] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summa-
rizing Source Code with Transferred API Knowledge. In Proceedings of the
27th International Joint Conference on Artificial Intelligence (IJCAI). https:
//doi.org/10.24963/ijcai.2018/314

[22] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011), 649–678.
https://doi.org/10.1109/TSE.2010.62

[23] Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
2016. Exploring the Limits of Language Modeling. CoRR abs/1602.02410 (2016).

[24] Oleksii Kuchaiev and Boris Ginsburg. 2017. Factorization Tricks for LSTM
Networks. InWorkshop Track Proceedings of the 5th International Conference on
Learning Representations (ICLR).

[25] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Václav Rajlich. 2007.
Feature Location via Information Retrieval Based Filtering of A Single Scenario
Execution Trace. In Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 234–243. https://doi.org/10.1145/1321631.
1321667

[26] Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu. 2020. Retrieval-
Augmented Generation for Code Summarization via Hybrid GNN. In International
Conference on Learning Representations (ICLR).

[27] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvinine-
jad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual Denoising Pre-training
for Neural Machine Translation. Transactions of the Association for Computational
Linguistics 8 (2020), 726–742. https://doi.org/10.1162/tacl_a_00343

[28] Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang. 2020. Un-
derstanding Build Issue Resolution in Practice: Symptoms and Fix Patterns. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
617–628. https://doi.org/10.1145/3368089.3409760

[29] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. 2021. Boosting Coverage-Based Fault Localization via Graph-
Based Representation Learning. In Proceedings of the 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 664–676. https://doi.org/10.1145/3468264.3468580

[30] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. 2007.
Recovering Traceability Links in Software Artifact Management Systems Using
Information Retrieval Methods. ACM Transactions on Software Engineering and
Methodology 16, 4 (2007), 13–es. https://doi.org/10.1145/1276933.1276934

[31] Yoëlle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. 1991. An Information
Retrieval Approach for Automatically Constructing Software Libraries. IEEE
Transactions on Software Engineering 17, 8 (Aug. 1991), 800–813. https://doi.org/
10.1109/32.83915

[32] Andrian Marcus, Jonathan I. Maletic, and Andrey Sergeyev. 2005. Recovery of
Traceability Links Between Software Documentation and Source Code. Interna-
tional Journal of Software Engineering and Knowledge Engineering 15, 05 (2005),
811––836. https://doi.org/10.1145/1276933.1276934

[33] Popel Martin, Tomkova Marketa, Tomek Jakub, Kaiser Łukasz, Uszkoreit Jakob,
Bojar Ondřej, and Žabokrtský Zdeněk. 2020. Transforming Machine Translation:
A Deep Learning System Reaches News Translation Quality Comparable to
Human Professionals. Nature Communications (2020).

[34] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing
and Optimizing LSTM Language Models. In Proceedings of the 6th International
Conference on Learning Representations (ICLR).

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://github.com/yh1105/Artifact-of-Assertion-ICSE22
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1145/2950290.2983940
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1145/1295014.1295038
https://doi.org/10.1145/1295014.1295038
https://doi.org/10.1109/TSE.2005.85
https://doi.org/10.1109/TSE.2005.85
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1007/s10664-019-09730-9
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/1321631.1321667
https://doi.org/10.1145/1321631.1321667
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1145/3368089.3409760
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/1276933.1276934
https://doi.org/10.1109/32.83915
https://doi.org/10.1109/32.83915
https://doi.org/10.1145/1276933.1276934


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li, and Qianxiang Wang

[35] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
2019. DeepDelta: Learning to Repair Compilation Errors. In Proceedings of the 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). 925–936. https://doi.org/
10.1145/3338906.3340455

[36] Kenton Murray and David Chiang. 2018. Correcting Length Bias in Neural
Machine Translation. In Proceedings of the 3rd Conference on Machine Translation
(WMT). 212–223. https://doi.org/10.18653/v1/w18-6322

[37] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-Directed Random
Testing for Java. In Companion to the 22nd ACM SIGPLAN Conference on Object-
Oriented Programming Systems and Applications Companion (OOPSLA). 815–816.
https://doi.org/10.1145/1297846.1297902

[38] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:
a Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics (ACL).
311–318. https://doi.org/10.3115/1073083.1073135

[39] Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Retrieval Augmented Code Generation and Summarization.
arXiv:2108.11601

[40] Maksym Petrenko and Václav Rajlich. 2013. Concept Location Using Program
Dependencies and Information Retrieval. Information and Software Technology
55, 4 (2013), 651–659. https://doi.org/10.1016/j.infsof.2012.09.013

[41] Renuka Sindhgatta. 2006. Using an Information Retrieval System to Retrieve
Source Code Samples. In Proceedings of the 28th International Conference on
Software Engineering (ICSE). 905–908. https://doi.org/10.1145/1134285.1134448

[42] Yoonki Song, Suresh Thummalapenta, and Tao Xie. 2007. UnitPlus: Assisting
Developer Testing in Eclipse. In Proceedings of the OOPSLA Workshop on Eclipse
Technology EXchange. 26–30. https://doi.org/10.1145/1328279.1328285

[43] Kunal Taneja and Tao Xie. 2008. Automated Regression Unit-Test Generation. In
Proceedings of the 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). 407–410. https://doi.org/10.1109/ASE.2008.60

[44] Chris Thunes. 2019. Javalang. https://github.com/c2nes/javalang
[45] Tanimoto TT. 1957. An Elementary Mathematical Theory of Classification and

Prediction. Internal IBM Technical Report (1957).
[46] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin

White, and Denys Poshyvanyk. 2018. An Empirical Investigation Into Learning
Bug-Fixing Patches in the Wild via Neural Machine Translation. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE). 832–837. https://doi.org/10.1145/3238147.3240732

[47] Jingyuan Wang, Yufan Wu, Mingxuan Li, Xin Lin, Junjie Wu, and Chao Li. 2020.
Interpretability is a Kind of Safety: An Interpreter-based Ensemble for Adversary

Defense. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD). 15–24. https://doi.org/10.1145/3394486.3403044

[48] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones
with Graph Neural Network and Flow-Augmented Abstract Syntax Tree. In Pro-
ceedings of the 27th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). 261–271. https://doi.org/10.1109/SANER48275.2020.
9054857

[49] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On Learning Meaningful Assert Statements for Unit Test Cases. In
Proceedings of the 42th IEEE/ACM International Conference on Software Engineering
(ICSE). 1398–1409. https://doi.org/10.1145/3377811.3380429

[50] Hui-HuiWei andMing Li. 2017. SupervisedDeep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source Code.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI). 3034–3040.

[51] Wikipedia contributors. 2021. Overlap — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Overlap&oldid=1061948530 [Online;
accessed 12-March-2022].

[52] Tao Xie. 2006. Augmenting Automatically Generated Unit-Test Suites with
Regression Oracle Checking. In Proceedings of the 20th European Conference
on Object-Oriented Programming (ECOOP). 380–403. https://doi.org/10.1007/
11785477_23

[53] Yunwen Ye and Gerhard Fischer. 2002. Supporting Reuse by Delivering Task-
Relevant and Personalized Information. In Proceedings of the 24th International
Conference on Software Engineering (ICSE). 513–523. https://doi.org/10.1145/
581339.581402

[54] Hao Yu,Wing Lam, Long Chen, Ge Li, Tao Xie, and QianxiangWang. 2019. Neural
Detection of Semantic Code Clones Via Tree-Based Convolution. In Proceedings
of the 27th IEEE/ACM International Conference on Program Comprehension (ICPC).
70–80. https://doi.org/10.1109/ICPC.2019.00021

[55] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent Neural
Network Regularization. arXiv preprint arXiv:1409.2329 (2014).

[56] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A Novel Neural Source Code Representation Based on Abstract Syntax
Tree. In Proceedings of the 41st IEEE/ACM International Conference on Software
Engineering (ICSE). 783–794. https://doi.org/10.1109/ICSE.2019.00086

[57] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang.
2019. Predictive Mutation Testing. IEEE Transactions on Software Engineering 45,
9 (2019), 898–918. https://doi.org/10.1109/TSE.2018.2809496

[58] Gang Zhao and Jeff Huang. 2018. DeepSim: Deep Learning Code Functional
Similarity. In Proceedings of the 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 141–151. https://doi.org/10.1145/3236024.3236068

https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.18653/v1/w18-6322
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2108.11601
https://doi.org/10.1016/j.infsof.2012.09.013
https://doi.org/10.1145/1134285.1134448
https://doi.org/10.1145/1328279.1328285
https://doi.org/10.1109/ASE.2008.60
https://github.com/c2nes/javalang
https://doi.org/10.1145/3238147.3240732
https://doi.org/10.1145/3394486.3403044
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1145/3377811.3380429
https://en.wikipedia.org/w/index.php?title=Overlap&oldid=1061948530
https://doi.org/10.1007/11785477_23
https://doi.org/10.1007/11785477_23
https://doi.org/10.1145/581339.581402
https://doi.org/10.1145/581339.581402
https://doi.org/10.1109/ICPC.2019.00021
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/TSE.2018.2809496
https://doi.org/10.1145/3236024.3236068

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DL-based Assertion Generation
	2.2 Information Retrieval
	2.3 Integration of IR and DL

	3 Approach
	3.1 IR-based Assertion Retrieval IRar
	3.2 Retrieved-Assertion Adaptation RAadapt
	3.3 Integration

	4 Experimental Setup
	4.1 Datasets
	4.2 Metrics

	5 Experimental Results
	5.1 RQ1: Effectiveness of IRar
	5.2 RQ2: Effectiveness of RAadapt
	5.3 RQ3: Effectiveness of Integration

	6 Threats to Validity
	7 conclusion
	Acknowledgments
	References

