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ABSTRACT
Commit messages summarize code changes of each commit in nat-
ural language, which help developers understand code changes
without digging into detailed implementations and play an essen-
tial role in comprehending software evolution. To alleviate human
efforts in writing commit messages, researchers have proposed var-
ious automated techniques to generate commit messages, including
template-based, information retrieval-based, and learning-based
techniques. Although promising, previous techniques have limited
effectiveness due to their coarse-grained code change representations.

This work proposes a novel commit message generation tech-
nique, FIRA, which first represents code changes via fine-grained
graphs and then learns to generate commit messages automati-
cally. Different from previous techniques, FIRA represents the code
changes with fine-grained graphs, which explicitly describe the
code edit operations between the old version and the new ver-
sion, and code tokens at different granularities (i.e., sub-tokens and
integral tokens). Based on the graph-based representation, FIRA
generates commit messages by a generation model, which includes
a graph-neural-network-based encoder and a transformer-based
decoder. To make both sub-tokens and integral tokens as available
ingredients for commit message generation, the decoder is further
incorporated with a novel dual copy mechanism. We further per-
form an extensive study to evaluate the effectiveness of FIRA. Our
quantitative results show that FIRA outperforms state-of-the-art
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techniques in terms of BLEU, ROUGE-L, and METEOR; and our
ablation analysis further shows that major components in our tech-
nique both positively contribute to the effectiveness of FIRA. In
addition, we further perform a human study to evaluate the quality
of generated commit messages from the perspective of developers,
and the results consistently show the effectiveness of FIRA over
the compared techniques.
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1 INTRODUCTION
When developers commit changed code to a version control system,
each commit is supposed to be documented with a commit message.
Commitmessages summarize code changes in natural language, and
can help developers quickly understand the high-level intention
of code changes without digging into detailed implementations.
Therefore, commit messages are prevalent in software maintenance
and play an essential role in comprehending software evolution [4].

However, manually writing commit messages can be very labor-
intensive. High-quality commit messages should precisely describe
the rationales of changed code, which often requires non-trivial
manual efforts in practice. In addition, modern software has been
evolving rapidly, and frequent commit submissions put a heavy
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burden on developers. Therefore, although commit messages are
beneficial, they are often neglected by developers due to the time
costs. As is reported, almost 14% commit messages in 23K Java
projects are empty [10].

To alleviate manual efforts in writing commit messages, re-
searchers have proposed various techniques to generate commit
messages automatically. Given a code change, these techniques
first represent the old-version and new-version code with specific
formats, such as sequences of tokens or paths of abstract syntax tree
(AST), and then generate commit messages based on the representa-
tions via different strategies such as template-based [4, 6], informa-
tion retrieval-based [16, 29], and learning-based [19, 28, 32, 41, 44]
techniques.

Although achieving promising performance, the effectiveness of
previous techniques has been restricted by their coarse-grained code
change representations. First, existing commit message generation
techniques represent the code changes by simply putting old-version
and new-version code together without explicitly highlighting fine-
grained edit operations. For example, given an expression “a = 1;”
modified into “b = 1;”, token-based representations [19, 32, 41, 44]
represent such code changes by concatenating both expressions
into one flat sequence of tokens (i.e., “- a = 1; + b = 1;”),
where -/+ denotes the old/new-version code; the AST-based rep-
resentations [28] represent the code changes by concatenating
old-version and new-version AST paths into one sequence (i.e., “-
assignment.variable.a.operator.=.literal.1; + assignme
nt.variable.b.operator.=.literal.1;”). Therefore, existing
learning-based models have to compare the code representations of
old and new versions so as to capture the subtle edit operation (i.e.,
the token “a” is changed into a new token “b”) by themselves, which
makes it more challenging to generate precise commit messages.
Second, existing code change representations mainly focus on coarse-
grained tokens (i.e., integral tokens) in the code without explicitly and
individually describing finer-grained tokens (i.e., sub-tokens of inte-
gral tokens). In fact, it is prevalent that the commit messages may
contain sub-tokens of the input code changes. For example, for a
code change that contains an integral token “setMinimumSize”, its
relevant commit message contains three tokens “set”, “minimum”,
and “size”, which are exactly the sub-tokens of the integral token
“setMinimumSize”. However, most previous techniques [19, 32, 41]
consider only integral tokens and ignore sub-tokens in their code
change representations; while a few techniques [28, 44] represent
all sub-tokens in a compound representation (e.g., one single em-
bedding vector) without representing each sub-token individually.
Such compound representations make it challenging to utilize each
sub-token as available ingredients for commit message generation.
Therefore, they exhibit a poor performance for the cases that com-
mit messages contain sub-tokens of the input code.

To address the limitations above, in this work, we propose a
novel commit message generation technique, FIRA, which first
represents code changes via fine-grained graphs and then learns
to generate commit messages automatically. Compared to previous
code change representations, FIRA makes the first attempt to ex-
plicitly describe the edit operations between the old-version and
new-version code, along with tokens at different granularities (i.e.,
integral tokens and sub-tokens). Based on the proposed graph-based
representations, FIRA then learns to generate commit messages

iteratively with an encoder-decoder model. In particular, FIRA in-
corporates the graph neural network in the encoder so as to directly
encode the graph-structured inputs; and the decoder incorporates
the transformer [39] and a novel dual copy mechanism, which can
not only generate tokens from the vocabulary but also copy both
integral tokens and sub-tokens from the input.

We perform an extensive evaluation to compare FIRA with
six state-of-the-art commit message techniques on a widely-used
benchmark [16, 19, 29, 32, 41, 44]. The results show that FIRA out-
performs all compared techniques in terms of BLEU, ROUGE-L, and
METEOR. We further analyze the effectiveness of each component
in FIRA by an ablation study and case analysis. The results further
confirm that major components (i.e., explicitly representing edit
operations and copying sub-tokens) both positively contribute to
the effectiveness of FIRA, and indeed help generate higher-quality
commit messages than previous techniques. In addition, we further
perform a human study to evaluate the quality of generated commit
messages from the perspective of developers, which consistently
shows the effectiveness of FIRA over compared techniques.

In summary, this paper makes the following contributions:

• A fine-grained graph-based code change representa-
tion for commit message generation, which explicitly de-
scribes code edit operations and tokens at different granu-
larities.

• Anovel encoder-decodermodel for commit message gen-
eration, which leverages the graph neural network in the
encoder to process the proposed graph-based representa-
tion, and leverages the transformer with a novel dual copy
mechanism in the decoder to utilize both integral tokens and
sub-tokens.

• An extensive experiment evaluating our approach against
six state-of-the-art techniques on a widely-used benchmark,
which suggests the effectiveness of our approach by the
quantitative, qualitative, and ablation analysis.

• A human study on the quality of generated commit mes-
sages, which further shows the effectiveness of our approach
from the perspective of developers.

• Areplicationpackage available at https://github.com/DJjjjhao/
FIRA-ICSE.

2 MOTIVATION
Existing commit message generation techniques represent and uti-
lize code changes in a coarse-grained way. First, they simply put
old-version and new-version code together without explicitly de-
scribing fine-grained edit operations; second, they only focus on
coarse-grained tokens (i.e., integral tokens) without representing
sub-tokens individually. In this section, we further illustrate these
limitations with several real-world examples.

2.1 Limitation 1: Edit Operations
As shown by the example in Figure 1, we can observe that edit
operations are highly relevant to developer-written commit mes-
sages. The developer makes the edit operation (i.e., adding one
token “abstract”) and the corresponding commit message indicates
his/her intention of making the class abstract. However, existing
techniques cannot always notice such edit operations, since their

https://github.com/DJjjjhao/FIRA-ICSE
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Commit Message:
Make base class abstract

- private class FormAuthClientBase extends 
SimpleHttpClient {

@@ -421,7 +421,7 @@ public class TestFormAuthenticator
extends TomcatBaseTest {

+  private abstract class FormAuthClientBase extends 
SimpleHttpClient {

protected static final String LOGIN_PARAM_TAG =    
"action=";
protected static final String LOGIN_RESOURCE =        
"j_security_check";

Figure 1: Motivating example: edit operations

class n0 private<nl>private abstract class n0

- +- - - + + +

(a) CODISUM

Old AST Old AST Path 
Embedding Final Representation

of Code Changes

New AST New AST Path 
Embedding

(b) ATOM

Figure 2: Existing code change representations

code change representations put old-version and new-version code
together without explicitly highlighting the differences. Therefore,
they have to compare old-version and new-version code and then
infer the edit operations by themselves. For example, as shown in
Figure 2a, CODISUM [44], one of the learning-based approaches,
represents the code change by concatenating the flat token se-
quences of old-version and new-version code into one sequence.
Although each token in the sequence is annotated with old version (-
) or new version (+), CODISUM has to learn to infer the specific edit
operation (i.e., one token “abstract” is added) by itself. Similarly, in
Figure 2b, another learning-based technique ATOM [28], represents
the code changes by concatenating old-version and new-version
AST paths together, and it also has to compare two paths by itself so
as to capture the edit operations at AST level. Such coarse-grained
code change representations are actually cumbersome, especially
when code changes involve very minor edit operations with the
majority of tokens unchanged (e.g., only one token is changed in
the example). Learning-based techniques cannot always guarantee
to precisely capture such subtle edit operations, which may fur-
ther result in imprecise commit message generation. In fact, our
experimental results also confirm that these techniques all fail to
generate precise commit messages for this example.

To address this limitation, we propose to explicitly highlight edit
operations in the code change representation, which can include
more accurate information for commit message generation.

getSupportActionBar().addTab(newTab);

Commit Message:
Add tab listener  for  feature  toggles

@@ -219,7 +220,7 @@ public class FeatureToggles extends 
SherlockActivity{

newTab.setText("Text!"); 
}

}

+ newTab.setTabListener(FeatureToggles.this);

Figure 3: Motivating example: sub-tokens

2.2 Limitation 2: Sub-tokens
As shown by the example in Figure 3, we can observe that sub-
tokens in the input code can provide very helpful hints for commit
message generation. For example, the developer-written commit
message “Add tab listener for feature toggles” consists of the sub-
tokens “tab”, “listener”, “feature” and “toggles” in the input code.
However, existing techniques focus on integral tokens and seldom
treat sub-token as equally important as integral token. For example,
most existing techniques [19, 32, 41] ignore sub-tokens in their
code change representations, while a few techniques [28, 44] de-
scribe all sub-tokens in a compound representation (e.g., one single
embedding vector) without representing sub-tokens explicitly and
individually. Such compound representations restrict the utilization
of sub-tokens. For example, with such representations, existing
techniques can only generate the frequent sub-tokens that are in-
cluded in the vocabulary, but often fail to generate those infrequent
sub-tokens that are excluded in the vocabulary or seldom occur
in the training set. Actually, for the generation tasks related to
program code, such infrequent sub-tokens can be very prevalent
since they are often project specific tokens (e.g., “tab” and “toggles”
in the example). Therefore, existing coarse-grained code change
representations make it challenging to generate commit messages
containing such sub-tokens.

Therefore, to fully utilize sub-tokens in the code, we propose
to treat all integral tokens and sub-tokens equally important and
represent sub-tokens individually in the code change representation.
In addition, to make both frequent and infrequent sub-tokens as
ingredients of the commit message, we further leverage a novel
dual copy mechanism additionally for sub-tokens in our model so
that both integral tokens and sub-tokens can be either copied or
generated from the vocabulary.

3 CODE CHANGE REPRESENTATION
This section presents our fine-grained graph-based code change
representation, which explicitly includes edit operations and sub-
tokens to enable more precise commit message generation. In par-
ticular, the graph construction consists of four steps, including (1)
building chopped abstract syntax trees (Section 3.1), (2) adding sub-
tokens (Section 3.2), (3) annotating edit operations (Section 3.3), and
(4) incorporating additional sequential information (Section 3.4).We
then introduce each step in detail and use the motivating example
in Figure 1 for illustration.

3.1 Chopped Abstract Syntax Trees
A typical code change often includes the modified code and its
surrounding context. For example, a code change in GitHub (e.g.,
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𝐴𝑆𝑇!"#𝐴𝑆𝑇$%&

AST/Integral token Node

class
dcl

abstractprivate c0

class
dcl

private c0

Figure 4: Graph𝐴𝑆𝑇 : chopped AST

Figure 1 and Figure 3) often contains multiple lines of code and each
line starts with its change type. More specifically, “-” denotes the
deleted old-version code, “+” denotes the added new-version code,
and the empty character “ ” denotes the unchanged code both in
old and new version. A code change may involve single or multiple
hunks. Here, a hunk refers to the continuous lines with the same
change type. Among commits in GitHub, some may modify only
one token in a hunk, while some may modify hundreds of lines in
multiple hunks. Existing learning-based techniques often represent
all the changed code together, e.g., CODISUM [44] concatenates all
deleted/added hunks as one sequence and ATOM [28] constructs
AST of the entire code file even if the code changes occur in only
several lines in the file. Representing the code change as a whole can
obfuscate details among hunks and thus makes it more challenging
for the commit message generation model to summarize essential
features from such a coarse-grained representation. Therefore, in
FIRA, we propose to construct AST at hunk level, so that more
detailed information can be reservedwhen the code change involves
multiple hunks.

More specifically, given a code change, we first separate it into
several hunks according to their change types; then for each hunk,
we parse it to construct its own abstract syntax tree, i.e., chopped
AST. In this way, we obtain a set of chopped ASTs for the given code
change, which are actually a set of graphs with basic semantic and
syntactic information of each hunk. In particular, for the chopped
AST of a deleted hunk (i.e., all its lines are deleted), we denote it
as AST𝑜𝑙𝑑 since the relevant code only exists in the old version;
for the chopped AST of an added hunk (i.e., all its lines are added),
we denote it as AST𝑛𝑒𝑤 since the relevant code only exists in the
new version. We denote the graph constructed in this phase as
Graph𝐴𝑆𝑇 . Figure 4 presents the Graph𝐴𝑆𝑇 of changed lines in the
illustration example, where “class dcl” is the abbreviation of the
AST node type “class_declaration”, and “c0” is the placeholder of
the class name “FormAuthClientBase”.

𝐴𝑆𝑇!"#𝐴𝑆𝑇$%&

AST/Integral token Node Sub-token Node

class
dcl

abstractprivate c0

class
dcl

private c0

form base form auth client baseauth client

Figure 5: Graph𝑡𝑜𝑘𝑒𝑛 : Graph𝐴𝑆𝑇 extended with sub-tokens

3.2 Sub-tokens
Asmentioned in Section 2, commitmessages often contain coarse/fine-
grained tokens (i.e., integral tokens and sub-tokens) in the input

code. Such a phenomenon is prevalent, since it is a common prac-
tice for developers to name a function or a class with phrases.
For example, given a method named as “deleteOldThreadDumps”,
this integral token consists of four sub-tokens “delete old thread
dumps”, which describe the functionality of the method and might
be adopted in the commit message when code changes are relevant
to this method. Therefore, in our representation, we consider not
only the integral tokens but also their sub-tokens. More specifically,
in each Graph𝐴𝑆𝑇 , for the node with an integral token, we split it
into separated sub-tokens according to the widely-adopted naming
convention (i.e., camel case and snake case), represent these sub-
tokens as extra nodes in the graph, and then connect them with
their belonging integral token nodes. In this way, the chopped AST
is extended with nodes and edges relevant to sub-tokens, where
integral tokens and sub-tokens are equally-important individuals
and both can be directly utilized in the subsequent commit mes-
sage generation. We denote the graph constructed in this phase as
Graph𝑡𝑜𝑘𝑒𝑛 . Figure 5 presents the Graph𝑡𝑜𝑘𝑒𝑛 , which extends the
Graph𝐴𝑆𝑇 (i.e., Figure 4) with sub-token information.

𝐴𝑆𝑇!"#
MATCH

𝐴𝑆𝑇$%&

AST/Integral token Node Sub-token Node Edit Node

class
dcl

abstractprivate c0

class
dcl

private c0

form base form auth client baseauth client

ADDMATCH

MATCH

Figure 6: Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 : Graph𝑡𝑜𝑘𝑒𝑛 extended with edit nodes

3.3 Edit Operations
So far, all nodes in the graph represent code elements, which are
denoted as code nodes for distinction. Based on Graph𝑡𝑜𝑘𝑒𝑛 , we
further introduce edit nodes to explicitly represent fine-grained
edit operations between AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤 . In particular, we
consider five edit nodes, including v𝐴𝐷𝐷 , v𝐷𝐸𝐿 , v𝑀𝑂𝑉𝐸 , v𝑈𝑃𝐷𝐴𝑇𝐸 ,
and v𝑀𝐴𝑇𝐶𝐻 .

• v𝐴𝐷𝐷 . If the code node 𝑣 exists in AST𝑛𝑒𝑤 but not in AST𝑜𝑙𝑑 ,
𝑣 is newly-added and should be connected with an edit node
v𝐴𝐷𝐷 .

• v𝐷𝐸𝐿 . If the code node 𝑣 exists in AST𝑜𝑙𝑑 but not in AST𝑛𝑒𝑤 ,
𝑣 is deleted and should be connected with an edit node v𝐷𝐸𝐿 .

• v𝑀𝑂𝑉𝐸 . If the code node 𝑣 exists in both AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤
and the positions of 𝑣 and its sub-tree are moved, the node
𝑣 in both AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤 should be connected with an
edit node v𝑀𝑂𝑉𝐸 .

• v𝑈𝑃𝐷𝐴𝑇𝐸 . If the code node 𝑣 exists in both AST𝑜𝑙𝑑 and
AST𝑛𝑒𝑤 and its value is updated, the nodes 𝑣 in both AST𝑜𝑙𝑑
andAST𝑛𝑒𝑤 should be connectedwith an edit node v𝑈𝑃𝐷𝐴𝑇𝐸 .

• v𝑀𝐴𝑇𝐶𝐻 . If a node 𝑣 exists in both AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤 and
its value and position remain unchanged, the nodes 𝑣 in both
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AST𝑜𝑙𝑑 and AST𝑛𝑒𝑤 should be connected with an edit node
v𝑀𝐴𝑇𝐶𝐻 .

According to the description above, we further insert edit nodes
to the Graph𝑡𝑜𝑘𝑒𝑛 by connecting them with the original code nodes.
We denote the graph constructed in this phase as Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 . Fig-
ure 6 presents the Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 , which further extends theGraph𝑡𝑜𝑘𝑒𝑛
(i.e., Figure 5) with edit nodes.

𝐴𝑆𝑇!"#𝐴𝑆𝑇$%&

AST/Integral token Node

abstractprivate c0 private c0class <nl> class

Figure 7: Graph𝑠𝑒𝑞 : one-line graph

𝐴𝑆𝑇!"#𝐴𝑆𝑇$%&
class
dcl

abstractprivate c0

class
dcl

private c0

form base form auth client baseauth client

ADD

class <nl> class

MATCH

MATCH

MATCH

AST/Integral token Node Sub-token Node Edit Node

Figure 8: Graph𝑓 𝑖𝑛𝑎𝑙 : fine-grained representation for code
changes

3.4 Additional Sequential Information
So far, the code change has mainly been represented based on
the AST structure. As suggested by previous work [19, 44, 45], the
sequential information (i.e., treating code as a flat token sequence)
can also be helpful for commit message generation, since it can
reserve the adjacent relationship and the order of the tokens. There-
fore, we further extend Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 with additional sequential
information so as to include more helpful information. In particular,
we first build an extra one-line graph (denoted as Graph𝑠𝑒𝑞) by
regarding each token as a node and connecting every two adjacent
nodes. Figure 7 presents the Graph𝑠𝑒𝑞 of the code change hank.
Then, we merge Graph𝑠𝑒𝑞 with the Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 by using the nodes
existing in both graphs as the anchor nodes. More specifically, for
each node 𝑣𝑖 in Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 , if 𝑣𝑖 matches with the node 𝑣 𝑗 in
Graph𝑠𝑒𝑞 , 𝑣𝑖 is removed from Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 and all its connected
edges are re-connected with 𝑣 𝑗 . In this way, we combine the AST-
based information (i.e., Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛) and sequential information
(i.e., Graph𝑠𝑒𝑞) into one larger graph, i.e., as Graph𝑓 𝑖𝑛𝑎𝑙 . Figure 8
presents the Graph𝑓 𝑖𝑛𝑎𝑙 for the illustration example, which further
extends the Graph𝑒𝑑𝑖𝑡𝑖𝑜𝑛 (i.e., Figure 6) with additional sequential
information.

4 MODEL ARCHITECTURE
Figure 9 presents the overview of our model, whose input is the
final graph-based code change representation and output is the

generated commit message. Overall, the model is in an encoder-
decoder architecture. In the encoder, we adopt graph neural net-
works (GNN) due to its strong capability of processing graph-
structured data [12, 13, 22, 30, 34, 40, 43]. In the decoder, we leverage
the transformer architecture [39], which is the state-of-the-art se-
quence to sequence model and is widely used in various generation
tasks [1, 37, 46], to generate tokens in commit messages iteratively.
When generating the next token, the decoder first performs self-
attention between the current token and the previously generated
tokens, and then performs cross-attention over input tokens embed-
ded by the encoder. In addition, to fully utilize the integral tokens
and sub-tokens in inputs, the decoder further incorporates a novel
dual copy mechanism, which can copy both integral tokens and
sub-tokens from the inputs. In other words, in each iteration, the
model can choose an integral token or a sub-token with highest
probability from the vocabulary or directly from the inputs. We
then describe each component in detail.

Input 
Embedding

Linear + Sigmoid Linear + Softmax

Gate

GNN

Linear Linear

Tanh + Linear + Softmax

Attention

𝑃!"#$

𝑃%"!&'

*

*
1-

𝑃()*#)*

Inputs

Dual Copy 
Mechanism

Output
Embedding

Already 
Generated 

Outputs

Transformer
Ajacent
Matrix

Figure 9: Architecture of the proposed model

4.1 Encoder
Given the final graph-based representation of code changes, i.e.,
Graph𝑓 𝑖𝑛𝑎𝑙 , the encoder first embeds the nodes with an embedding
layer (i.e., in Section 4.1.1); then the graphs are represented by
embedding vectors and an adjacency matrix, which can be further
fed to a graph neural network layer (i.e., in Section 4.1.2); the final
output of the encoder is learned representation vectors for each
node, which can be further used by the decoder.
4.1.1 Embedding Layer. Formally, the final graph-based represen-
tation of code changes Graph𝑓 𝑖𝑛𝑎𝑙 can be defined as G = (V, E),
where V denotes the nodes and E denotes the edges in the graph.
As mentioned above, V contains two types of nodes, i.e., code
nodes and edit nodes. We establish a lookup table for both nodes
and covert them to embedding vectors based on the table. In par-
ticular, the embedding vectors of code nodes can be denoted as
[𝒄1, 𝒄2, ..., 𝒄𝑁𝑐

] and the embedding vectors of edit nodes can be de-
noted as [𝒆1, 𝒆2, ..., 𝒆𝑁𝑒

], where 𝑁𝑐 and 𝑁𝑒 denote the numbers of
code nodes and edit nodes, respectively. Therefore, the embedding
vectors𝐸 for the graph can be represented by [𝒄1, 𝒄2, ..., 𝒄𝑁𝑐

, 𝒆1, 𝒆2, ...
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, 𝒆𝑁𝑒
], where 𝐸 ∈ R𝑑𝑥×𝑁 , 𝑁 = 𝑁𝑐 + 𝑁𝑒 , and 𝑑𝑥 denotes the em-

bedding size. Note that embedding vectors are learnable and are
initialized randomly.
4.1.2 Graph Neural Network. The embedding vectors are further
fed into a graph convolution network (GCN) layer. GCN [22] is a
variant of the graph neural network (GNN) and it leverages the first-
order approximation of Chebyshev Spectral CNN (ChebNet) [7] to
aggregate the feature information among all neighbor nodes [43].

Here we use an adjacency matrix and the embedding vectors 𝐸
to identically represent the input graph G, so that GCN can directly
process the input. For an adjacency matrix 𝐴 of G (𝐴 ∈ {0, 1}𝑁×𝑁 ),
𝐴𝑖, 𝑗 means whether there exists an edge between the node 𝑣𝑖 and
the node 𝑣 𝑗 in G. In order to preserve the information of each
node itself, we further include self-connections to each node in
the graph and obtain an enhanced adjacency matrix 𝐴 with self-
connections. In addition, to avoid gradient explosion caused by
accumulated degrees, we apply symmetric normalization to 𝐴 and
get the normalized adjacency matrix 𝐴, as shown in Equation 1. 𝐷
denotes the degree matrix of 𝐴, which can be computed by 𝐷𝑖𝑖 =∑
𝑗 𝐴𝑖 𝑗 .

𝐴 = 𝐷− 1
2𝐴𝐷− 1

2 . (1)
The output of GCN in the 𝑙th iteration can be computed as

Equation 2.𝑊𝑔 ∈ R𝑑𝑥×𝑑𝑥 is the trainable parameters. 𝑋 𝑙−1 denotes
the embedding vectors of the nodes in the last iteration, and initially
𝑋 0 is the embedding vectors of all nodes (i.e., 𝐸). In addition, to
boost the learning process, we employ residual connection [15] and
layer normalization [2] similar to the transformer architecture [39].

𝑋 𝑙 =𝑊𝑔𝑋
𝑙−1𝐴, (2)

After 𝐿 iterations, the final representation of the nodes can be
denoted as 𝑋𝐿 , i.e., 𝑋𝐿 ∈ R𝑑𝑥×𝑁 .

4.2 Decoder
The decoder is built on top of a transformer architecture with a
novel dual copy mechanism for both integral tokens and sub-tokens.

4.2.1 Transformer Layer. Here we use the decoder part of trans-
former [39], which is stacked by multi-head self-attention, multi-
head attention over the output of the encoder, and a fully-connected
feed-forward network.

For better illustration, we denote the output of the encoder as𝑋𝑒 ,
i.e., 𝑋𝑒 = 𝑋𝐿 . The decoder decides each token in the commit mes-
sage iteratively, which is based on both the output of the encoder
𝑋𝑒 and the currently generated tokens. When generating the 𝑘th
token in the commit message, we denote the output of the decoder
as 𝒙𝑘

𝑑
, (i.e., 𝒙𝑘

𝑑
∈ R𝑑𝑥 ), which can be computed as Equation 3. For

better illustration, we use 𝑋𝑘−1
𝑑

to represent the already generated
output [𝒙1

𝑑
, 𝒙2
𝑑
, ..., 𝒙𝑘−1

𝑑
] of the decoder.

𝒙𝑘
𝑑
= Transformer(𝑋𝑒 , 𝑋𝑘−1𝑑

) (3)
Next, we introduce the detailed computation process of trans-

former. First, transformer computes multi-head self-attention (i.e.,
𝑎𝑘
𝑑
).𝑎𝑘

𝑑
is the concatenation of multiple single attention𝑎𝑘

𝑑
(𝑖), which

is the weighted sum of the already generated output𝑋𝑘−1
𝑑

, as shown
in Equation 4 and Equation 5.𝑊𝑄 (𝑖) ∈ R𝑑𝑥×𝑑𝑥 ,𝑊𝐾 (𝑖) ∈ R𝑑𝑥×𝑑𝑥 ,

𝑊𝑉 (𝑖) ∈ R𝑑𝑥×𝑑𝑥 ,𝑊𝑂 ∈ R𝑑𝑥×ℎ𝑑𝑥 denote the projection parameters,
and ℎ is the number of heads.

𝒂𝑘
𝑑
(𝑖) =𝑊𝑉 (𝑖)𝑋𝑘−1𝑑

· softmax
©«
(
𝑋𝑘−1
𝑑

)𝑇
𝑊𝐾 (𝑖)𝑇 ·𝑊𝑄 (𝑖)𝒙𝑘−1

𝑑
√
𝑑𝑥

ª®®¬
(4)

𝒂𝑘
𝑑
=𝑊𝑂 [𝒂𝑘

𝑑
(1); 𝒂𝑘

𝑑
(2); ...; 𝒂𝑘

𝑑
(ℎ)] (5)

Second, transformer computes multi-head attention between 𝑎𝑘
𝑑

and the output of the encoder𝑋𝑒 , which is denoted as 𝑎𝑘𝑒 and shown
in Equation 6 and Equation 7.

𝒂𝑘𝑒 (𝑖) =𝑊𝑉 (𝑖)𝑋𝑒 · softmax
(
𝑋𝑒
𝑇𝑊𝐾 (𝑖)𝑇 ·𝑊𝑄 (𝑖)𝒂𝑘

𝑑√
𝑑𝑥

)
(6)

𝒂𝑘𝑒 =𝑊𝑂 [𝒂𝑘𝑒 (1); 𝒂𝑘𝑒 (2); ...; 𝒂𝑘𝑒 (ℎ)] (7)

Third, 𝑎𝑘𝑒 passes a fully connected feed-forward network to get
the output 𝒙𝑘

𝑑
, as shown in Equation 8.𝑊1 ∈ R𝑑𝑥×𝑑𝑥 ,𝑊2 ∈ R𝑑𝑥×𝑑𝑥 ,

𝑏1 ∈ R𝑑𝑥 , 𝑏2 ∈ R𝑑𝑥 are trainable parameters.

𝒙𝑘
𝑑
=𝑊2 ·max(0,𝑊1𝒂

𝑘
𝑒 + 𝑏1) + 𝑏2 (8)

𝒙𝑘
𝑑
is then fed to a linear layer and transformed into a |𝑉 |-

dimension vector 𝒐𝑘𝑣 as shown in Equation 9. |𝑉 | denotes the size
of the vocabulary and𝑊𝑣 ∈ R |𝑉 |×𝑑𝑥 is a trainable parameter.

𝒐𝑘𝑣 =𝑊𝑣𝒙
𝑘
𝑑

(9)

At last, for each token in the vocabulary, the decoder calculates
its probability of being selected as the next token by passing 𝒐𝑘𝑣
to a softmax layer. 𝒑𝑘𝑣 denotes the probability distribution across
the vocabulary, and 𝒑𝑘𝑣 (𝑖) denotes the probability of the 𝑖th token
being selected, which is computed as Equation 10.

𝒑𝑘𝑣 (𝑖) =
𝑒𝑥𝑝{𝒐𝑘𝑣 (𝑖)}∑ |𝑉 |
𝑗=1 𝑒𝑥𝑝{𝒐

𝑘
𝑣 ( 𝑗)}

(10)

4.2.2 Dual Copy Mechanism. To fully utilize both integral tokens
and sub-tokens during commit message generation, we propose and
include a novel dual copy mechanism in the decoder. In this way,
when generating each token in the commit message, the candidate
tokens can be selected not only from the vocabulary but also from
the integral tokens or sub-tokens in the input.

More specifically, in the 𝑘th iteration, the probability of each
input token being copied is computed according to the current
output of the decoder (i.e., 𝒙𝑘

𝑑
). In FIRA, we consider the input

token which is the most similar to 𝒙𝑘
𝑑
with the highest probability

of being copied. Given an input token (i.e., a code node 𝑣 𝑗 in G),
its similarity to 𝒙𝑘

𝑑
can be computed by the sum of its embedding

vector 𝒙 𝑗𝑒 and the output of the decoder 𝒙𝑘𝑑 , as shown in Equation 11.
𝑊1 ∈ R𝑑𝑥×𝑑𝑥 ,𝑊2 ∈ R𝑑𝑥×𝑑𝑥 , 𝒗 ∈ R𝑑𝑥 are learnable parameters.

𝑠𝑘 ( 𝑗) = 𝒗𝑇 tanh(𝑊1𝒙
𝑘
𝑑
+𝑊2𝒙

𝑗
𝑒 ) (11)
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The similarity of 𝑘th token 𝒔𝒌 is further fed to a softmax layer,
which generates the probability of each input token being copied,
i.e., 𝒑𝑘𝑐 = softmax(𝒔𝑘 ).

At the end of the iteration, we combine the probability distri-
bution across the vocabulary tokens (i.e., 𝒑𝑘𝑣 ) and the probability
distribution across input tokens (i.e., 𝒑𝑘𝑐 ) as Equation 13. 𝑔 are
learned according to the output of the decoder, as shown in Equa-
tion 12.𝒘 ∈ R1×𝑑𝑥 is the learnable parameter. In this way, the 𝑘th
token to be selected in the commit message would be a token from
the vocabulary or copied from inputs.

𝑔 =
1

1 + 𝑒𝑥𝑝{𝒘𝒙𝑘
𝑑
}

(12)

𝒑𝑘 = [𝑔 ∗ 𝒑𝑘𝑣 ; (1 − 𝑔) ∗ 𝒑𝑘𝑐 ] (13)

5 EXPERIMENTAL SETUP
5.1 Research Question

• RQ1: Overall effectiveness. How does FIRA perform com-
pared to the state-of-the-art commit message generation
techniques?

• RQ2: Ablation analysis. How does each component of
FIRA contribute to the effectiveness?

• RQ3: Human evaluation. How does FIRA perform from
the perspective of developers?

5.2 Dataset
Our experiments are evaluated on thewell-established benchmark [20,
44], which has been widely used in previous commit message gen-
eration techniques [16, 19, 29, 32, 41, 44]. The dataset is based on
the commits from top 1,000 popular Java projects in GitHub, ex-
cluding rollback/merge commits and duplicated code changes. For
each commit, it includes the first sentence of the relevant commit
message. In total, the dataset contains 90,661 pairs of commits and
the relevant commit messages. Following existing work [44], we
randomly select 75,000 commits as the training set, 8,000 commits
as the validation set, and the remaining 7,661 commits as the testing
set.

5.3 Compared Techniques
We compare FIRA with six state-of-the-art commit message gener-
ation techniques as follows.

Information retrieval-based techniques leverage informa-
tion retrieval (IR) to adopt existing commit messages from similar
code changes. We consider two representative IR-based techniques
NNGen [29] and LogGen [16] for comparison.

Learning-based techniques leverage neural machine transla-
tion (NMT) models to generate commit messages automatically.
We consider four state-of-the-art learning-based techniques, i.e.,
CODISUM [44], ATOM [28], CoreGen [32], and CoRec [41] for
comparison.

5.4 Implementation
Representations. FIRA applies GumTree [11] to map ASTs of old-
version and new-version code and then to identify edit operations.

GumTree [11] is a representative AST mapping algorithm and has
been widely adopted in various tasks [5, 14, 18, 24, 26, 31].

Model. In the encoder, we set the size of the input graphs (i.e., the
maximum number of nodes) up to 650, containing up to 370 code
nodes and 280 edit nodes, which is more than the number of the
graph nodes of each training data so that the largest graphs in the
training set can be included. In the decoder, we set the maximum
length of each commit message as 30, which is longer than the
length of all commit messages in the training set. For the hyper-
parameters, we configure the six-layer GNN with 0.20 dropout
rate [36], and the six-layer eight-head transformerwith 0.10 dropout
rate and 256-dimension hidden states. In the training phase, we
adopt the cross-entropy loss function and the Adam optimizer [21]
with 0.0001 learning rate. We tune these hyper-parameters and
select the best performing model in the validation set.

Compared techniques.We directly reuse the implementations of
the compared techniques from their reproducible packages, if their
packages are available and executable [28, 29, 32, 41]; otherwise,
we re-implement the techniques strictly following the description
in their papers.

Environment. The experiments are performed on a Dell worksta-
tion with Intel Xeon CPU E5-2680 v4 @ 2.40GHz, running Ubuntu
16.04.6 LTS. The models are trained on two 24G GPUs of GeForce
RTX 3090 and two 24G GPUs of NVIDIA TITAN RTX.

5.5 Evaluation Metrics
We use the commit messages (i.e., manually written by developers)
in the dataset as the ground truth. In particular, given a code change,
we compare the similarity between the generated commit message
with the ground truth. Following previous work on commit message
generation [16, 19, 28, 29, 32, 41, 44], we use thewidely-usedmetrics,
BLEU, ROUGE-L, and METEOR to measure the similarity. Their
computation details are presented as follows.

BLEU measures the precision of generated sequences by calcu-
lating its average of the modified n-gram precision (i.e., 1-gram,
2-grams, 3-grams and 4-grams for BLEU-4) [33]. The modified n-
gram precision refers to the ratio of the number of matched n-grams
to the number of all the n-grams in the generated sequence. So far,
researchers have proposed several variants of BLEU. According to
a recent human study [38], the B-Norm BLEU exhibits the most
consistently with human judgements on the quality of commit mes-
sages. Therefore, in this paper, we use B-Norm BLEU as one of the
metrics.

ROUGE-L calculates the F-score of precision and recall based on
the longest common sub-sequences (LCS) between the generated
sequence and the ground truth [25]. A longer LCS indicates the
higher similarity between two sentences.

METEOR calculates the harmonic mean of 1-gram precision
and 1-gram recall of the generated sequence against the ground
truth [3]. It also includes a penalty mechanism when the matched
tokens are not adjacent.

6 RESULTS AND ANALYSIS
In this section, we first present the overall results of FIRA (RQ1) in
Section 6.1, the results of the ablation study (RQ2) in Section 6.2
and human evaluation (RQ3) in Section 6.3.
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Table 1: Overall commit message generation results

Model BLEU ROUGE-L METEOR

LogGen [16] 8.95 10.50 8.34
NNGen [29] 9.16 11.24 9.53
CoreGen [32] 14.15 18.22 12.90
CODISUM [44] 16.55 19.73 12.83
ATOM [28] 8.35 10.17 8.73
CoRec [41] 13.03 15.47 12.04

FIRA 17.67 21.58 14.93

6.1 RQ1: Overall Effectiveness
Table 1 presents average of BLEU, ROUGE-L and METEOR on all
the commit messages generated by FIRA and compared techniques.
Figure 10 further shows the distribution of ROUGE-L in a box plot.

LogGen NNGen ATOM CoRec CoreGen CODISUM FIRA
Model
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Figure 10: Box plot of ROUGE-L

As shown by the table and the figure, FIRA outperforms all the
compared techniques including the best IR-based technique NNGen
and the best learning-based technique CODISUM on all metrics,
indicating effectiveness both in precision (i.e., BLEU, ROUGE-L and
METEOR) and recall (i.e., ROUGE-L andMETEOR). For example, the
improvements achieved by FIRA range from 7% to 112%, 9% to 112%,
and 16% to 79% in BLEU, ROUGE-L, and METEOR, respectively. In
addition, it is notable that the IR-based approaches LogGen and
NNGen perform significantly worse. A potential reason is that these
techniques can only retrieve existing messages from the retrieved
database instead of generating new commit messages. In other
words, they are no longer effective, once there exists no similar
code change as the given code change.

Table 2: Penalty-BLEU of all approaches

Model LogGen NNGen CoreGen CODISUM ATOM CoRec FIRA

Penalty-BLEU 7.15 8.07 11.15 12.07 7.42 10.49 13.30

BLEU may overrate the precision of the cases that the actual
number of the matched n-grams is small but the length of the
commit message is even shorter, which may result in biased average
of all commit messages. Therefore, for those short commit messages,
we introduce a penalty mechanism by multiplying their original

BLEU with a penalty factor, to reduce their impact on the final
average score. The penalty factor 𝑓𝑖 of the 𝑖-th commit message can
be computed as Equation 14, which is the ratio of the length of the
𝑖-th ground truth commit message to the total length of all ground
truth commit messages.

𝑓𝑖 = 𝑙𝑒𝑛(𝑚𝑠𝑔𝑖 )/
∑
𝑗

𝑙𝑒𝑛(𝑚𝑠𝑔 𝑗 ) (14)

We denote the BLEU with an enhanced penalty as penalty-BLEU
for distinction. Table 2 presents the penalty-BLEU of all approaches.
From the table, we can find that our approach also outperforms
other approaches in terms of the penalty-BLEU, indicating FIRA is
consistently effective on generating commit messaging of different
lengths.

In summary, our quantitative results show that FIRA outper-
forms all six compared techniques in terms of all studied metrics;
meanwhile FIRA is consistently effective on generating commit
messages of different lengths.

6.2 RQ2: Ablation Study
In this section, we further perform an ablation study to investigate
the effectiveness of each component in FIRA. The major novelty
of FIRA is explicitly including and analyzing (1) edit operations
between old and new versions, and (2) copying sub-tokens with a
dual copy mechanism. Therefore, to investigate their contribution,
we further build two variants of FIRA by (1) removing the edit
operations from the code change representation graph (i.e., denoted
as FIRA𝑒𝑑𝑖𝑡−), and (2) degrading the dual copy mechanism into
single copy mechanism for integral tokens which cannot copy
sub-tokens anymore (i.e., denoted as FIRA𝑠𝑢𝑏−). In addition, we
build a naive model by removing both components (i.e., denoted
as FIRA𝑏𝑜𝑡ℎ−) for comparison. Table 3 presents the effectiveness of
the default FIRA and variants. In the following sections, we then
analyze the contribution of each component quantitatively and
qualitatively.

Table 3: Results of the ablation study

Model BLEU ROUGE-L METEOR

FIRA𝑒𝑑𝑖𝑡− 17.39 21.15 14.54
FIRA𝑠𝑢𝑏− 17.36 20.97 14.09
FIRA𝑏𝑜𝑡ℎ− 16.82 20.15 13.42

FIRA 17.67 21.58 14.93

6.2.1 Contribution of edit operations. As shown in Table 3, the
effectiveness of FIRA𝑒𝑑𝑖𝑡− becomes worse in terms of all three
metrics, indicating that including edit operations is helpful for
commit message generation.

We further look into some cases that FIRA𝑒𝑑𝑖𝑡− exhibits less
effective than the default FIRA in terms of these metrics. Figure 11
presents such a real-world case, which includes the code changes,
the ground truth, the commit messages generated by the default
FIRA, FIRA𝑒𝑑𝑖𝑡−, and other compared techniques, including the
best IR-based technique NNGen and the best learning-based tech-
nique CODISUM. In this example, developers rename the method
from “getInputEventListener” to “getInputEventHandler” in
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return mInputEventHandler;
}

throw new IllegalStateException("Fragment InputEventListener
already present");

}
mFragment.setInputEventHandler(mInputEventHandler);

@@ -264,7 +264,7 @@ public class PlaybackOverlayFragment extends 
DetailsFragment {          

@@ -290,7 +290,7 @@ public abstract class PlaybackControlGlue {
throw new IllegalStateException("Fragment              
OnItemViewClickedListener already present");             

}
mFragment.setOnItemViewClickedListener(mOnItemViewClickedListener);

+  if (mFragment.getInputEventHandler() != null) {

- public final InputEventHandler getInputEventListener() {

+  public final InputEventHandler getInputEventHandler() {

- if (mFragment.getInputEventListener() != null) {

Commit message:
Ground Truth:  Rename getInputEventListener to getInputEventHandler
FIRA:               Rename getInputEventListener to getInputEventHandler
FIRAedit-:  Fix a potential npe
NNGen:            Allow fadeout when fadeenabled is false     
CODISUM:      Fix a typo in PlaybackControlGlue

Figure 11: Case analysis: edit operations

two involving files, and the manual commit message exactly de-
scribes such edit operations. As shown in the figure, the default
FIRA can precisely generate the exactly samemessage as developers,
whereas after removing explicit representation of edit operations
FIRA𝑒𝑑𝑖𝑡− fails to generate such correct message. In addition, we
can observe that other compared techniques cannot generate the
precise commit message neither, since none of them represents edit
operations explicitly. Such observations further confirm our intu-
ition that representing edit operations explicitly can help the model
to capture the fine-grained code changes, enabling more precise
commit message generation. On the contrary, if the old-version and
new-version code are represented in combination without high-
lighting their differences, the model has to learn to capture such
edit operations by itself, which can be challenging especially when
there are only a few tokens changed.

import java.awt.event.*;
import java.util.*;

@@ -39,6 +40,8 @@ public class TransferCallDialog{
this.setOkButtonText(GuiActivator.getResources()

.getI18NString("service.gui.TRANSFER"));
+ this.setMinimumSize(new Dimension(300, 300));

addOkButtonListener(new ActionListener()
{
public void actionPerformed(ActionEvent e)

@@ -6,6 +6,7 @@
package net.java.sip.communicator.impl.gui.main.call;
+import java.awt.*;

Commit message:
Ground Truth:  Set minimum size for transfer call dialog
FIRA:               Set minimum size for TransferCallDialog
FIRAsub-: Set dialog size to the dialog
NNGen:            Remove border from dialpad button to hide the button style on ubuntu     
CODISUM:      Set the size of the size

Figure 12: Case analysis: copying sub-tokens

6.2.2 Contribution of copying sub-tokens. As shown in Table 3, the
performance of FIRA𝑠𝑢𝑏− declines, indicating the dual copy mecha-
nism for sub-tokens indeed boosts commit message generation.

We further look into some cases that FIRA𝑠𝑢𝑏− exhibits less ef-
fective than the default FIRA in terms of these metrics. Figure 12
presents such a real-world case in our dataset, including the code
changes, the ground truth, the commit messages generated by the
default FIRA, FIRA𝑠𝑢𝑏−, and other compared techniques. In the ex-
ample, the developer commit message contains several sub-tokens

in the newly-added code (i.e., setMinimumSize) and the integral to-
ken in its belonging class name “TransferCallDialog”. As shown
in the figure, the default FIRA can effectively utilize sub-tokens in
the input code, while the FIRA𝑠𝑢𝑏− without the dual copy mecha-
nism is incapable of copying the infrequent sub-token (i.e., minimum)
to the commit message. In addition, other compared techniques fail
to generate precise commit messages neither. For example, NNGen
generates a completely irrelevant commit message. For CODISUM,
it includes only two sub-tokens in the generated commit message
and generates the commit message with poor readability. Since
CODISUM only leverages a single copy mechanism for integral
token, it can only generate the frequent sub-tokens from the vocab-
ulary (e.g., two successfully generated sub-tokens set and size)
but fails to generate the infrequent sub-token (e.g., minimum) that
is excluded in the vocabulary or seldom occurs in the training set.

Table 4: Results for copying sub-tokens

Model Copy Ratio (%) #Different Sub-tokens Occurrence Frequency

NNGen 10.53 436 689
CODISUM 3.77 115 1097

FIRA𝑠𝑢𝑏− 5.40 159 1118
FIRA 11.95 454 643

To confirm the explanation above, we further investigatewhether
dual copy mechanism has correctly copied sub-tokens into commit
messages. In particular, we denote the sub-token appears both in the
input code change and the commit message as a copy token. We then
compute the ratio of the number of correctly-copied copy tokens
to the number of all copy tokens in our testing set. A higher ratio
indicates the technique is more effective in copying sub-tokens. We
also present the number of different correctly-copied sub-tokens.
In addition, we further present the average number of times of the
correctly-copied sub-tokens occurring in the training messages,
which can reflect the occurrence frequency of the sub-tokens. Ta-
ble 4 presents the results. Based on the table, we can notice that
FIRA can correctly copy more sub-tokens than other techniques,
and FIRA can copy more infrequent sub-tokens. Furthermore, we
notice that only FIRA can copy the sub-tokens never occurring
in the training set. Without the dual copy mechanism, the per-
formance of FIRA𝑠𝑢𝑏−declines a lot. We can notice that NNGen
performs well in terms of copying sub-token, because instead of
generating new commit messages, IR-based techniques select ex-
isting messages based on the similarity of the code changes and
similar code changes may have common sub-tokens. However, note
that the overall performance of IR-based techniques (i.e., as shown
in Table 1) is much worse than FIRA (i.e., 9.16 v.s 17.67 in BLEU).
In summary, the results further indicate FIRA can copy sub-tokens
effectively.

6.3 RQ3: Human Evaluation
To further study the quality of generated commitmessages from the
perspective of developers, we perform a human study to evaluate
the commit messages generated by FIRA and compared techniques.
We compare FIRA with the best retrieval-based technique NNGen
and the best learning-based technique CODISUM. We invite six
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developers1 to participate in this study, who have industrial experi-
ence in Java programming language ranging from 3 to 5 years.

Table 5: Scoring criterion

Score Definition

0 Neither relevant in semantic nor having shared tokens.
1 Irrelevant in semantic but with some shared tokens.
2 Partially similar in semantic, but each contains exclusive information.
3 Highly similar but not identical in semantic.
4 Identical in semantic.

6.3.1 Study Design. Following previous work [28, 41], we ran-
domly select 100 commits from the testing set and design a ques-
tionnaire for manual evaluation. For each commit, the questionnaire
includes the code change, the ground truth commit message, and
the commit messages generated by FIRA as well as the compared
techniques (i.e., the best IR-based technique NNGen and the best
learning-based technique CODISUM). Each invited participant is
asked to score the commit messages generated by three techniques
(i.e., FIRA, CODISUM, and NNGen) based on the code changes and
the ground truth commit message. The score ranges from 0 to 4, and
a higher score indicates a higher similarity between the generated
commit message and the ground truth. We follow the existing scor-
ing criterion [28, 29], and detailed definition is shown in Table 5. To
avoid bias, all three techniques are anonymous in the questionnaire
and each participant fills in the questionnaire separately.

Table 6: Results of the human evaluation

Model Low (%) Medium (%) High (%) Average Score

NNGen 71.3 13.2 15.5 0.98
CODISUM 38.0 19.8 42.2 2.06

FIRA 35.5 20.3 44.2 2.15

6.3.2 Results. For each technique, we measure the quality of its
generated commit message based on the average scores of six partic-
ipants on that commit message. In particular, in line with previous
work [28, 29], we regard the commit messages scored 0 and 1 as
low-quality, scored 2 as medium-quality, and scored 3 and 4 as
high-quality. Table 6 presents the ratio of commit messages of dif-
ferent quality. As shown in the table, a large proportion (i.e., 44.2%)
of commit messages generated by FIRA are considered as high-
quality by the participants. In addition, FIRA exhibits the largest
ratio of high-quality commit messages while the lowest ratio of
low-quality commit messages. The average score also indicates the
out-performance of FIRA over compared techniques. To confirm
our observations, we further conducted a Wilcoxon signed-rank
test [42] between the scores of FIRA and the other techniques. The
results further confirm that difference between the scores of FIRA
and NNGen/CODISUM is statistically significant at the confidence
level of 95%.

6.3.3 Successful cases. We further present two cases that FIRA
achieves higher scores in Figure 13 and Figure 14. Each figure in-
cludes the code change, the ground truth, and the commit messages

1None of them are co-authors of this paper.

@@ -88,6 +88,7 @@ public class DeepLearningAutoEncoderTest extends 
TestUtil {

// cleanup
mymodel.delete();

frame.delete();
p.delete();
l2_frame.delete();

@@ -95,7 +96,6 @@ public class DeepLearningAutoEncoderTest extends 
TestUtil {

reconstructed.delete();
((Frame)DKV.get(Key.make("Difference")).get()).delete();
diff.delete();

}
}

Commit message:
Ground Truth:  Fix memory leak
FIRA:               Fix memory leak in DeepLearningAutoEncoderTest
NNGen:           Add missing npe checks
CODISUM:     Fix test case

+    frame.add("dummy", resp);

- resp.remove(null);

Figure 13: Example of fixing memory leak

generated by FIRA and the compared techniques, i.e., NNGen and
CODISUM.

The first example in Figure 13 shows the code changes for fixing a
memory-leak bug. In particular, the old-version code “resp.remove
(null);” fails to delete the object “resp”, which results in a mem-
ory leak; while the new-version code puts “resp” as a member
of “frame”, which can successfully delete “resp” once “frame” is
deleted. As shown in the figure, FIRA successfully predicts the in-
tention of fixing memory leak and also the location of where mem-
ory leak occurs, which we consider as a precise commit message;
whereas, other approaches fail to generate such commit messages.

Locale locale = MetricsUtils.getMetricsReporterLocale(stormConf);
if (locale != null) {

builder.formattedFor(locale);

@@ -37,11 +36,7 @@ public class ConsolePreparableReporter implements 
PreparableReporter<ConsoleRepo

LOG.debug("Preparing...");
ConsoleReporter.Builder builder =
ConsoleReporter.forRegistry(metricsRegistry);

+  builder.outputTo(System.out);

- PrintStream stream = System.out;
- if (stream != null) {
- builder.outputTo(stream);
- }

Commit message:
Ground Truth:  Remove unnecessary null check on stdout stream
FIRA:               Remove unnecessary null check
NNGen:           Make teeprintstream thread safe
CODISUM:     Remove unnecessary code

Figure 14: Example of removing unnecessary null check

The second example in Figure 14 shows the code changes for re-
moving an unnecessary null check, since the object “stream” never
becomes null. As shown in the figure, FIRA appears to capture the
functionality of changed code (i.e., null check) and thus generates
similar message with the ground truth. In contrast, the compared
approaches fail to generate proper descriptions for the given code
change: NNGen generates completely irrelevant message while
CODISUM generates over-general and uninformative message.

7 DISCUSSION
7.1 Threats to Validity
The internal threat to validity lies in the implementation of com-
pared techniques and our approach. To reduce this threat, we di-
rectly reuse the implementation of the compared techniques from
their reproducible packages, if their packages are available and exe-
cutable [28, 29, 32, 41]; otherwise, we re-implement the techniques
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strictly following their papers. We also build our approach based on
existing mature tools/libraries, such as GumTree [11]. In addition
to code review, we also sampled 100 data items from our dataset
and manually ensure there is no violation case where camel case
or snake case is not applicable.

The external threat to validity lies in the dataset used in the ex-
periment. To mitigate this threat, we use a well-established dataset,
which has been constructed on popular Java projects from GitHub
and well-cleaned by previous work [20, 44].

The construct threat lies in the metrics used in evaluation. To
reduce this threat, we adopt several metrics that have been widely
used by prior work on commit message generation [16, 19, 28, 29,
32, 41, 44]. In addition, we further perform a human evaluation
to evaluate the effectiveness from the perspective of developers.
We strictly follow the procedure of previous work [28, 41] and
invite experienced developers, so as to reduce the threats in human
evaluation (e.g., the limited number of participants [23]).

7.2 Limitations
The section discusses the limitations in FIRA. First, our approach
would be less effective when the code change cannot be parsed
into valid AST. In this case, FIRA would utilize only sub-token
identifiers and sequential information during learning. Such cases
are actually not observed in our dataset according to our manual
inspection, which however are still possible in practice. Second,
when the training set contains highly-similar code changes as the
given one and the frequency of these similar data items is quite low
(e.g., only once), FIRA is less effective than the retrieval-based ap-
proaches. It is a common drawback for learning-based techniques,
since retrieval-based approaches can inherently retrieve the cor-
rect commit message for the similar inputs from the training set.
Third, when the commit message contains tokens absent from both
vocabulary and the input code change, FIRA would fail to generate
these tokens in the commit message.

8 RELATEDWORK
The existing work on commit message generation can be catego-
rized as template-based, information retrieval-based, and learning-
based techniques.

The template-based techniques [4, 6, 35] analyze code changes
and generate commit messages with pre-defined patterns. For ex-
ample, Buse and Weimer [4] design pre-defined templates based
on path predicates, while Cortés-Coy et al. [6] propose templates
based on method stereotypes [9] and commit stereotypes [8]. In
general, the template-based techniques tend to describe what is
changed but has weak capability of capturing the rationales and
purposes of code changes. In addition, they are effective only when
the cases perfectly fit with the pre-defined rules, but cannot be
general due to the diversity of commit messages.

The information retrieval-based approaches [16, 17, 29] leverage
IR techniques to adopt existing commit messages from similar code
changes. For example, given a code change as a query, Liu et al. [29]
leverage cosine similarity and BLEU to select a most similar code
change from the training set; similarly, Huang et al. [17] use both
syntax similarity and semantic similarity as the similarity metric.
However, IR-based techniques are no longer effective once there is

no similar code change in the retrieved database and they can only
output existing commit messages instead of generating new ones.

More recently, researchers propose to leverage advanced learn-
ing techniques in commit message generation. The learning-based
techniques [19, 27, 28, 32, 41, 44] regard commit message genera-
tion as a translation problem, and adopt neural machine translation
(NMT) models to generate commit message for the given code
change. Existing learning-based techniques first represent the old-
version and new-version code with specific formats respectively,
such as sequences of tokens [32] or paths of abstract syntax tree
(AST) [28], concatenate both representations, and generate commit
messages via different learning models. The code representations
in existing learning-based techniques are coarse-grained, since (1)
they represent the code changes by simply putting old-version and
new-version code together, and thus edit operations have to be
learned by models, and (2) they only focus on integral tokens with-
out individually describing sub-tokens, and thus commit message
with infrequent sub-tokens cannot be generated. To address these
limitations, we propose a fine-grained graph-based representation
for code changes to enable more powerful commit message genera-
tion. In addition to the code change representation, we propose a
novel model that is different from prevision work. In particular, we
leverage a graph neural network in the encoder so as to directly
encode the graph-structured inputs; and we equip the decoder with
the transformer and a novel dual copy mechanism, which can not
only generate tokens from the vocabulary but also directly copy
both integral tokens and sub-tokens from the input.

9 CONCLUSION
In this work, we propose a novel commit message generation tech-
nique, FIRA, which first represents code changes via fine-grained
graphs and then learns to generate commit messages automatically.
Compared to previous code change representations, FIRA explicitly
describes the edit operations between the old-version and new-
version code, along with tokens at different granularities. Based
on the proposed graph-based representations, FIRA generates com-
mit messages by a generation model. FIRA incorporates the graph
neural network in the encoder so as to directly encode the graph-
structured inputs; and the decoder incorporates the transformer
and a novel dual copy mechanism, which can not only generate
tokens from the vocabulary but also directly copy both integral
tokens and sub-tokens from the input. We perform an extensive
evaluation to compare FIRAwith six commit message techniques on
a widely-used benchmark. The results show that FIRA outperforms
all compared techniques in terms of BLEU, ROUGE-L, andMETEOR.
We further analyze the effectiveness of each component in FIRA by
an ablation study and case analysis. The results further confirm that
major components both positively contribute to the effectiveness
of FIRA. In addition, we further perform a human study to evaluate
the quality of generated commit messages from the perspective of
developers, which consistently shows the effectiveness of FIRA.
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