
Interactive Patch Filtering as Debugging Aid

Jingjing Liang∗†, Ruyi Ji∗†,Jiajun Jiang‡, Shurui Zhou§, Yiling Lou∗†, Yingfei Xiong∗† and Gang Huang∗†
∗Key Laboratory of High Confidence Software Technologies (Peking University), MoE, Beijing, PR China

†Department of Computer Science and Technology, EECS, Peking University, Beijing, PR China
‡College of Intelligence and Computing, Tianjin University, Tianjin, PR China

§University of Toronto, Toronto, Canada
∗{jingjingliang,jiruyi910387714,louyiling,xiongyf,hg}@pku.edu.cn, ‡jiangjiajun@tju.edu.cn, §shuruiz@ece.utoronto.ca

Abstract—It is widely recognized that patches generated by
program repair tools have to be correct to be useful. However, it
is fundamentally difficult to ensure the correctness of the patches.
Many tools generate only the patches that are highly likely to be
correct by taking conservative strategies which inevitably limit
the recall of APR approaches. While the recall of APR can
potentially be improved by relaxing the requirement on precision,
more incorrect patches may also be generated.

In this paper, we conjecture that reviewing incorrect patches
also helps developers to understand the bug, and with proper
tool support, reviewing incorrect patches would at least not
reduce the repair performance. To evaluate this, we propose an
interactive patch filtering approach to facilitate developers in
the patch review process via effectively filtering out groups of
incorrect patches.

We implemented the approach as an Eclipse plugin, InPaFer,
and evaluated the effectiveness and usefulness with a mixed-
method evaluation. The results show that our approach improves
the repair performance of developers, with 62.5% more success-
fully repaired bugs and 25.3% less debugging time. In particular,
even if all generated patches are incorrect, the performance of
developers would not be significantly reduced, and could still be
improved. Our work provides a new way of thinking for the APR
research.

Index Terms—Interactive debugging, Patch filtering, User
study, Program repair

I. INTRODUCTION

In the past decades, automatic program repair (APR) at-

tracted a lot of research efforts [1]–[18]. Many of the proposed

APR techniques are test-based, which take a buggy program

and a test suite with at least one failed test as input and

automatically generate a set of patches that make all tests pass.

It is commonly recognized that the generated patches have

to be correct to be useful. Multiple existing studies have

revealed that the performance (i.e., debugging time and success

rates) of developers increases when they are provided with

only correct patches. But this performance increase disappears

when incorrect patches are also provided, and becomes neg-

ative when the developers are provided with only incorrect

patches [19]–[22]. However, it is fundamentally difficult to

ensure the correctness of the patches because in practice

we usually only have a weak specification of the program

behavior, usually a test suite, such that many more incorrect

This work is supported in part by the National Key Research and Devel-
opment Program of China No. 2019YFE0198100, National Natural Science
Foundation of China under Grant No. 61922003. Yingfei Xiong is the
corresponding author.

patches can meet the specification than correct patches [23].

This is known as the problem of “overfitting” [24], [25] or

“weak test suite” [26].

As a result, many approaches take conservative strate-

gies [27]–[32], generating only the patches that are highly

likely to be correct, and thus inevitably limiting the recall

of APR approaches. For example, Hercules [18], the approach

that generates correct patches for the highest number of bugs in

Defects4J [33] within our knowledge, only generates correct

patches for 13% of the bugs. Such a low recall limits the

amount of aid that program repair approaches could give to

the developers, and improving the recall of program repair

approaches is desirable.

If the requirement on precision can be loosened, the recall

of APR can potentially be improved. To validate this point,

we consider a basic way of improving the recall at the cost

of the precision: combining the patches produced by different

program repair approaches. In this way, a correct patch can

be generated for a bug if any of the combined approaches

generates a correct patch for the bug, and the recall of the

combined approach may be significantly higher than any of

the individual approaches. This combination is also feasible

as current repair approaches often require tens of minutes to

fix a bug [29], [30], [34]–[36] and are assumed to work offline,

e.g., after a nightly build and before the working time of the

next day. In such a case, we have a whole night to invoke

different program repair approaches.

We conducted a preliminary study by collecting the patches

generated by 13 existing program repair approaches on De-

fects4J [33]. The details of the study can be found in Section II.

The results show that the combined approach significantly

improves recall with 124% more bugs fixed. However, more

incorrect patches are also generated, and the incorrect patches

tend to gather together: on many bugs multiple incorrect

patches are generated.

Therefore, in this paper we ask a question: would an
APR approach be useful if multiple incorrect patches are
generated along with the correct patches? If the answer is

yes, it enables the above approach of combining APR tools

and opens doors to multiple possibilities. For example, a future

APR tool could take a more aggressive strategy to generate as

many patches as possible such that the chance of generating

a correct patch is higher.

We have observed that the practical usage of APR tools

239

2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSME52107.2021.00028

consists of two steps [37]: (1) patch generation, where the

APR tool proposes candidate patches; and (2) patch review,

where the developer examines the patches to ensure the

correctness and other quality attributes. While patch generation

has been extensively studied, we still lack understanding and

tool support for the patch review step. Since incorrect patches

might provide developers with information about the bug

from different perspectives, we conjecture that reviewing
incorrect patches also helps developers to understand the
bug, and with proper tool support, reviewing incorrect
patches would at least not reduce the repair performance
(i.e., debugging time and success rates) of the developers.

To verify this conjecture, in this paper we propose an

interactive patch filtering approach to help developers identify

correct patches for a bug from a group of candidate patches.

Our approach groups the candidate patches based on the

program attributes and generates a list of filtering criteria. For

example, the attributes could be about the behavior of a test

(e.g., whether a statement should be executed during a test

or not). Developers pick a filtering criterion and provide an

answer (‘Yes’ or ‘No’) to keep or filter out the corresponding

patches. The process continues until developers figure out a

correct patch (by picking an automatically generated one or

contriving a new one) or no more patches can be filtered out.

We named our approach InPaFer, which stands for Interactive

Patch Filter. We design a two-stage algorithm, introducing an

offline preparation stage to optimize the response time of the

online interaction stage. We developed InPaFer as an Eclipse

plugin as illustrated in Figure 3.
We first quantitatively evaluate the effectiveness of the

filtering criteria of InPaFer in an ideal setting in controlled ex-

periments. Then we conduct non-trivial user studies with 200

debugging sessions to evaluate the effectiveness and usefulness

of InPaFer in the real debugging scenario. The results show

that InPaFer improves the repair performance of developers.

In particular, compared with manual debugging, developers

with InPaFer and a set of generated patches correctly repaired

62.5% more bugs and used 25.3% less time on average. Even

if all generated patches are incorrect, the performance of

developers would not be significantly reduced, and could still

be improved. This confirms our conjecture: with proper tool

support, the patch review process helps developers understand

the bug, and eventually contributes to the debugging process.
This study provides a new way of thinking for the APR

research – instead of sacrificing the recall for the precision of

APR techniques, we could improve the patch review process

by quickly narrowing down to the correct patch candidates

and/or giving developers hints for correct patches. In this way,

we do not have to sacrifice the recall of the APR tools and

could assist developers on many more bugs.
In summary, this paper makes the following contributions:

1) A novel finding that, with proper tool support in patch

review, an APR with low precision could still be useful.

2) An interactive patch filtering approach to supporting the

patch review step, and a two-stage algorithm to imple-

ment the approach.

TABLE I: APR tools included in InPaFer

Name Description

jKali [9]
The Java version of Kali [26], which only performs
functionality deletion.

jGenProg [9]
The Java version of GenProg [35], [38], which repair
bugs with genetic programming algorithm.

kPAR [39]
The Java version of PAR [40], which generate
patches based on predefined fix patterns.

Nopol [6] Repairing buggy conditions with constraint solving.
jMutRepair [36] Repairing bugs with a set of predefined mutators.
Cardumen [34] Generating patches based on mined templates.

Avatar [4]
Repairing bugs with fix patterns of static analysis
violations.

HDrepair [5] A repair tool based on historical bug-fix information.

ACS [28]
Learning statistical information from open source
programs for fixing incorrect conditions.

3sfix [41]
Repair approaches based on similar code match.CapGen [29]

SimFix [30]

DeepRepair [42]
An extension of jGenProg, which leverages code
similarity.

3) An Eclipse plugin with a carefully designed interface for

the user to easily filter out incorrect patches and better

understand the bug and patches.

4) Non-trivial user studies to investigate the effectiveness

and usefulness of InPaFer.

II. PRELIMINARY STUDY

In order to validate the feasibility of combining program

repair approaches, we conducted a preliminary study by col-

lecting patches generated by existing APR tools. Since our

goal is to maximize the recall, we considered all tools that

are listed at program-repair.org in May 2019 (the time we

designed the experiments in this research), and included each

tool if (1) it has published patches on Defects4J [33], and (2)

adding the tool increases the recall of the combined approach.

As a result, we collected all patches generated by 13 APR tools

(listed in Table I), covering 147 bugs on Defects4J 1.0.0. From

the statistics on the numbers of bugs in Table II, we have the

following three observations:
Combining existing approaches can significantly improve

the recall. Table II shows that the combination can provide

correct patches for 76 bugs, which is 124% more than the

best performed individual approach (34 bugs) [30].
Incorrect patches are often generated along with correct

patches. We observe that among all bugs where correct patches

are generated, 47% (36/76) of the bugs also have incorrect

patches generated.
Gathering effect: when two patches could be generated for

one bug, more patches tend to be generated. Table II shows

that 80% (71/89) of the bugs have at least 3 patches among

all bugs where multiple patches are generated. The reason for

the gathering effect is intuitive: when multiple patches could

pass the tests, the tests are probably weak and more patches

could be generated.

III. INTERACTIVE PATCH FILTERING

In this section, we first use an illustrative example to

introduce the workflow of InPaFer (Section III-A), and then

240

TABLE II: Dataset in preliminary study

Project
Patches (Contain) Patches (Not Contain)

TotalSingle Multiple Single Multiple
(1) (2) (3,n) (1) (2) (3,n)

Chart 2 1 8 3 3 5 22
Closure 11 1 2 6 3 7 30
Lang 10 0 8 4 2 3 27
Math 15 0 15 3 6 21 60
Time 2 1 0 2 1 2 8
Total 40 3 33 18 15 38 147

Patches (Contain): the number of bugs whose candidate patches contain
correct patches, Patches (Not Contain): the number of bugs whose
candidate patches do not contain correct patches.
Single (1): the number of bugs whose candidate patches contain
only one patch, Multiple (2): the number of bugs whose candidate
patches contain two patches, Multiple (3,n): the number of bugs whose
candidate patches contain at least three patches.

313 public double eval(final double[] val, ...){
...

320 if(length == 1){//incorrect patches change
here

321 var = 0.0;
322 }else if(length > 1){
323 Mean mean = new Mean();
324 double m = mean.evaluate(val,weights,...);
325 var = evaluate(val,weights,m,begin,length);
326 }

...
329 }

501 public double evaluate(double[] values, ...) {
...

520 for(int i=0;i < weights.length;i++){ //buggy
521 sumWts += weights[i];
522 }

...
532 }

Fig. 1: A code snippet from Math41

demonstrate the interactive patch filtering process in detail

(Section III-B and III-C).

A. Illustrative Example

Figure 1 shows a code snippet from bug Math41 in

Defects4J [33] benchmark, which invokes the buggy method

evaluate() when the condition length>1 is satisfied

(line 322). To repair this bug, existing APR tools generated a

set of candidate patches. Table III lists three of such patches,

which can make the corresponding test suite pass. In the table,

the second column denotes the line number of the code in

Figure 1 where the corresponding patch changes, while the last

two columns present the patch details and their correctness.

From Table III we can see that the patches and the

corresponding patched programs exhibit different dynamic

and/or static attributes. For example, the code changes occur

in method eval() for patches p2 and p3, while method

evaluate() for p1. In addition, after applying the candidate

patches and running tests, we can find that patches p2 and

p3 make the failing test case go into the then branch in line

321. In contrast, the else branch between lines 323 and

325 will be taken when applying p1. Therefore, checking the

correctness of such program attributes can help developers

TABLE III: Candidate patches for Math41

ID Line Changes Correct

p1 520
- for (i = 0; i < weights.length; i++){
+ for (i = begin; i < begin + length; i++){ Yes

p2 320
- if (length == 1){
+ if (length == 5){ No

p3 320
- if (length == 1){
+ if ((length & 1) == 1){ No

TABLE IV: First two filtering criteria for Math41

ID Program Attribute Patch Option

f1 Modify method evaluate() in class Variance p1 Yes/No
f2 Execute code in line 321 in class Variance p2,p3 Yes/No

Patch: the patches satisfying the corresponding program attribute.

to filter out the incorrect patches. For instance, if developers

have more confidence to believe that the buggy code should

reside in method evaluate(), the patches changing code

in other methods can be filtered out (i.e., p2 and p3).

According to this observation, we design an interactive

patch filtering tool, called InPaFer. Given a set of patches

for a bug, InPaFer analyzes what program attributes could

distinguish the patches, and presents Yes/No options about the

correctness of the program attributes to the developer. Such

an option is called a filtering criterion. When an answer is

provided to a filtering criterion, InPaFer will automatically

filter out the corresponding patches that contradict the answer

(’Yes’ for confirmation or ’No’ for rejection). The process of

providing an answer and filtering patches is called a filtering
step. InPaFer proceeds the filtering steps interactively with

developers until a termination state is reached.

Table IV presents two representative filtering criteria for the

patches listed in Table III. Suppose the developer first selects

f2, and rejects it (i.e., answer No). The patches corresponding

to the program attribute in f2 will be filtered out (i.e., p2 and

p3), while other patches that do not meet the attribute will

remain (i.e., p1).

Providing answers to the filtering criteria also helps under-

stand the bug. For example, providing an answer to f1 would

draw the developer’s attention to method evaluate(),

where the root cause of the bug resides. Providing an answer

to f2 helps the developer understand that the value of var is

related to the error (since resetting it to zero makes the test

pass). Therefore, these efforts will eventually contribute to the

repair process and would not be wasted even if a correct patch

does not stand out in the end.

There is a challenge in implementing InPaFer: since collect-

ing program attributes may take a lot of time, such as program

execution traces, it is impractical to provide a timely response

for online debugging. To overcome this challenge, we utilize

the fact that repair approaches are assumed to work offline,

e.g., after a nightly build and before the working time of the

next day, and design InPaFer as a two-stage approach. As

shown in Figure 2, the preparation stage is an offline process

that collects program attributes and constructs filtering criteria,

while the interaction stage is an online process that performs

241

Fig. 2: The workflow of InPaFer

patch filtering via interacting with developers, which can be

achieved within a short response time.

B. Preparation Stage

Preparation stage is an offline process that performs data

preparation for the next interaction stage. Given a set of

patches related to a bug, InPaFer automatically collects pro-

gram attributes for different patches, which will be finally

leveraged to construct a set of filtering criteria for interaction.

Generally, any kind of attributes can be used in our approach

as long as they can distinguish the candidate patches from

some perspectives. However, the attributes that can distinguish

more patches and are easy to understand for developers should

be preferred, because they potentially can decrease the number

of interactions and reduce the burden on developers. As a

result, the current implementation of InPaFer employs three

kinds of program attributes, including both static code prop-

erty (Modified Method) and dynamic runtime features

(Execution Trace and Variable Value). According

to prior studies [19], [43]–[45], these attributes are useful for

developers to understand the program during debugging and

have the ability to distinguish candidate patches. The details

of each attribute are described as follows.

• Modified Method can be interpreted as “The method
m in class c should be patched”, where m and c represent

the names of a method and a class, respectively. InPaFer
analyzes the patches and collects their modified methods

during the preparation stage. When a patch changes multiple

methods, InPaFer collects all of them.

• Execution Trace can be interpreted as “The statement
at line n in class c should be executed”, where n and c rep-

resent the line number and the class, respectively. However,

the complete execution trace can be too lengthy for manual

check. InPaFer currently only considers the execution trace

in those methods that are modified by candidate patches,

which is easier for manual check since it is close to the

changed code.

• Variable Value can be interpreted as “The value val
is assigned to var during program execution”, where val
and var represent a value and a variable, respectively.

Particularly, InPaFer considers all local variables and class

fields with primitive types at the entry and exit locations of

the modified methods. The reason that only these variable

assignments are considered is not to overwhelm the devel-

oper with too many filtering criteria.

For each kind of attribute, InPaFer constructs a set of fil-

tering criteria, which will be used in the interaction stage. For

Execution Trace and Variable Value, we consider

the information under only failing test cases, because there are

a lot of passing test cases that may overwhelm the developer. If

a bug has more than one failing test case, InPaFer will collect

the information for different patches under each failing test

case. All of them will be used to construct filtering criteria.

Additionally, InPaFer will remove all the filtering criteria that

cannot distinguish any candidate patch.

C. Interaction Stage

Interaction stage is an online process with developers

(shown in Figure 2) using the filtering criteria constructed in

the preparation stage. The input of this stage is a list of filtering

criteria and the complete project under debugging. Each time,

InPaFer collects the feedback from developers for a certain

filtering criterion, and updates the candidate filtering criteria

and patches in accordance. More concretely, in the interactive

debugging process, there are in total three kinds of actions that

a developer can take.

• Filter Confirming or rejecting a filtering criterion to filter

candidate patches.

• Select Selecting a patch from candidates as the correct patch.

• Generate Generating a correct patch manually to fix the bug.

For each filtering step, InPaFer (1) updates the candidate

patches by keeping only the patches consistent with the

answer, (2) updates the filtering criteria by keeping only those

associating with only a proper subset of the remaining patches,

and (3) presents the updated patches and filtering criteria to the

developer. The process terminates when the developer Select
or Generate a correct patch, or when there is no criterion left.

IV. ECLIPSE PLUGIN & USER INTERFACE

We implemented InPaFer in a prototype of the same name,

which is a plugin for Eclipse with a graphical user interface

(GUI) [46].Figure 3 shows a snapshot of the plugin during a

debugging process, which corresponds to the example shown

in Figure 1. Specifically, it consists of two embedded views,

Filter View and Diff View.

Filter View is the main component of our approach, which

presents the filtering criteria and corresponding candidate

patches. Specifically, we designed three panels: (1) Panel 1

renders the failing test cases and the number of corresponding

candidate patches; (2) Panel 2 shows a list of filtering crite-

ria related to the currently selected test, each including the

attribute detail, the number of related patches, and the state

of the criterion (YES – confirm, NO – reject, UNCLEAR

– no answer). The attribute detail includes the three kinds

of attributes in Section III-B. For example, Variance#321
in Execution Trace represents “The code at line 321
in class Variance should be executed”. Users could click

‘Yes’ to filter out all patches uncovered by the criterion

and ‘No’ to filter out the complement, and the state of the

criterion is updated accordingly; and (3) Panel 3 displays the

candidate patches covered by the latest filtering criterion that

242

Fig. 3: The screenshot of InPaFer plugin. Panel 1 presents the number of current candidate patches, Panel 2 presents the

filtering criteria based on three kinds of attributes, and Panel 3 presents the detailed information of candidate patches.

was clicked. Additionally, the plugin also provides a one-click

rollback to reset all the answers.

Diff View is an auxiliary view to visualize the differences

of execution traces before and after applying a patch to the

buggy program, where the green lines of code are commonly

covered by the failing test before and after the repair, while

the red lines of code are particularly covered by one of them.

Finally, the other lines of code are changed by the patch or

not covered by any of them. In this way, the user can clearly

understand the impact of the patch on the program execution.

For the convenience of debugging, all views or panels

are logically interrelated, and the selection of one part may

trigger the update of other places. For example, when a test

is selected in Panel 1, Panel 2 will be updated to show the

filtering criteria related to the test. When a patch is selected,

the Diff View will refresh the trace difference immediately.

The Filter View is also logically related to the text editor

of Eclipse. For example, if the user selects a Modified
Method-related filtering criterion in Filter View, the cursor

of the text editor will jump into the corresponding modified

method. Similarly, users could locate the changed code in the

text editor by simply selecting a patch.

V. EVALUATION

To evaluate the effectiveness and usefulness of InPaFer, we

address the following four research questions:

• RQ1: How effective are the filtering criteria in filtering

incorrect patches?

• RQ2: Can InPaFer improve the debugging efficiency and

success rates of developers in the real world?

• RQ3: Do developers regard InPaFer useful, and if so,

what aspect of InPaFer is most helpful?

• RQ4: How does InPaFer compare with fault localization

techniques?

We answer the first research question in controlled experi-

ments in an ideal setting, in which we quantitatively measure

the ratio of incorrect patches that can be filtered out and the

number of filtering steps required if all answers are correct.

Subsequently, we qualitatively answer the remaining three

research questions via user studies, in which we provide

an Eclipse plugin to developers and measure the debugging

performance of the developers. We use the Paired Wilcoxon

rank-sum test to establish statistical significance.

A. Quantitative Study (RQ1)

In this study, we answer RQ1 by quantitatively measuring

the ratio of incorrect patches that could be filtered out if all

answers are correct, and the number of filtering steps required.

1) Experimental Setup:
a) Dataset: We use the dataset collected during our

preliminary study (Section II). We filtered out 58 bugs that

have only one patch, and the Time11 bug that causes an

243

TABLE V: Dataset in experiments

Project KLoC #Bugs #AvgPatch #C/#NC

Chart 96 17 225 9/8
Closure 90 13 6 3/10
Lang 22 13 66 8/5
Math 85 42 92 15/27
Time 28 3 9 1/2

Total 321 88 99 36/52

KLoC: thousands of lines of code, #Bugs: number of bugs per project,
#AvgPatch: average number of patches per bug, #C/#NC: number of bugs
which contain or do not contain correct patches.

TABLE VI: (RQ1) Ratio of incorrect patches that are success-

fully filtered by InPaFer for all bugs

Ratio of Incorrect Patches Filtered 0 (0, 100%) 100% Total

Number of Bugs 21 25 42 88

instrumentation issue. In total, we collected patches for 88

bugs of 5 Java projects (See Table V).

b) Procedure: To simulate the interactive process of

reviewing patches using InPaFer, for a given bug and corre-

sponding candidate patches, we randomly select one filtering

criterion each time and then automatically provide the correct

answer via analyzing the patched program. The simulative

process terminates when there is no filtering criterion left.

We repeat the experiment ten times and calculate the average

results. Please note that we do not simulate Select or Generate,

and no correct patch could be possibly filtered out.

2) Results:
a) Effectiveness: Table VI shows the ratio of the incor-

rect patches that are successfully filtered out by the filtering

criteria in InPaFer. The result shows that, for 47.7% (42/88)

bugs, InPaFer correctly filters out all incorrect patches. For

23.9% (21/88) bugs, InPaFer cannot generate any filtering

criterion to filter out incorrect patches. For 28.4% (25/88)

bugs, InPaFer could partially filter out incorrect patches.

To understand the reason why InPaFer cannot fully filter out

the incorrect patches, we randomly sampled 5 bugs out of the

46 ones and manually checked the corresponding patches. The

results show that the program states of these candidate patches

are the same when running the failing test. For example, in

Figure 4 we show a pair of candidate patches of Chart1, one

is correct while the other is not. They both change the if
condition (line 2) and have the same execution trace, and thus

the current version of InPaFer is not able to distinguish them.

However, InPaFer could be further improved by incorporating

more kinds of attributes, such as invariance information [44].

We leave it to future work.

b) Number of Filtering Steps: We investigate the number
of filtering steps needed to filter out all incorrect patches.

The results show that our approach requires a median of 2.2

filtering steps (standard deviation is 2.6). There are in the

median of 7 candidate patches per bug, which means without

the help of InPaFer, developers need to go through 7 patches

one by one, but with InPaFer, developers could just click the

filtering button 2.2 times to filter out all incorrect patches.

1 // correct patch // incorrect patch
2 - if(dataset != null){ - if(dataset != null){
3 + if(dataset == null){ + if(AbsRenderer.ZERO ==

null){
4 return result; return result;
5 } }

Fig. 4: Example candidate patches left after filtering

c) Additional research questions: We also answer two

additional research questions regarding the importance of

different attribute types and the effect of developers’ errors

through controlled experiments. Due to space limitations, we

put the details in the Appendix [46].

RQ1: If the answers to filtering criteria are all
correct, InPaFer filters out all incorrect patches for
47.7% bugs with a median of 2.2 filtering steps.

B. User Study I (RQ2 & RQ3)

We answer RQ2 and RQ3 by evaluating the effectiveness

and usefulness of InPaFer in the real debugging scenario.

1) Study Design: To investigate the impact of our approach

to developers’ debugging performance in practice, we design

three debugging settings:

• ManuallyFix: repair bugs without candidate patches

• FixWithPatches: repair bugs with candidate patches

• FixWithInPaFer: repair bugs using InPaFer
Note that in all settings, participants are allowed to use the

Eclipse debugger and run test cases as they need.

a) Tasks: Since there could be no correct patch available

in the candidate patches, we design two types of tasks to

reflect the two scenarios: (1) the correct patch is available,

and (2) no correct patch is available. Since the design goal

of InPaFer is to help review a group of patches, we consider

only bugs with 3 or more patches. We further consider only

the bugs that do not require specific domain knowledge. From

the Defects4J dataset that was used in our previous experiment

(see Table V), we identified 38 bugs meeting the above criteria,

whose median number of patches is 20 per bug. Among them,

26 bugs contain a correct patch and 12 bugs contain no correct

patch. We randomly selected 2 bugs from each category, where

Task1 and Task2 contain the correct patches, while Task3 and

Task4 do not (see details in Table VII). The participants would

not be informed whether the candidate patch set contains a

correct patch.

Please note that it is inherently difficult to increase the

number of tasks in user studies and the number of tasks

in our user studies is already the largest among multiple

recent top-conference publications that evaluate an interactive

debugging technique (1-4 tasks) [22], [47]–[49]. To mitigate

the small number of tasks, we will not rely on only the

statistical results of the four tasks, but also analyze the

reasons of the participants’ performance in different tasks.

Furthermore, these bugs are representative in terms of InPaFer

244

TABLE VII: Bugs of each task in the user study

Task ID Bug ID #Patch (#Cor Patch) #Remain Incor Patch

Task1 Chart9 26 (4) 12
Task2 Math41 48 (1) 1

Task3 Lang14 8 (0) 0
Task4 Lang22 24 (0) 0

#Patch: number of patches, #Cor Patch: number of correct patches,
#Remain Incor Patch: number of remaining patches after filtering.

performance in RQ1. Among the four tasks, InPaFer can filter

out all incorrect patches in three of them, and the filtering

steps are among 2 to 4.8.

b) Pilot Study: We performed a pilot study to estimate

the required power (i.e., number of participants) of our study

and to tune the tasks and descriptions. We asked 10 students

from computer science department to use InPaFer plugin

on 2 tasks. We improved the UI design of InPaFer and

the initial setup of user study with the suggestion provided

by the pilot participants for the final study. The 10 pilot

participants did not participate in the final study. We also

measured the time and estimated that the effect size was big

enough to show significant effects with few participants in

the actual experiment. We had an estimation of 25 minutes

when debugging without candidate patches, compared to an

estimation of 20 minutes when using InPaFer. Based on the

observation in the pilot study, we set a time limit of 30 minutes

per task. We define a debugging session as successful when

the bug is correctly repaired within the time limit.

c) Participants: In total, we recruited 30 participants to

conduct our user study. They are all students majoring in

computer science from our department. They have at least

three-year programming experience and are familiar with

debugging in Eclipse. Additionally, the participants have no

prior knowledge of the bugs in our study.

d) Procedure: In the study, participants were evenly

divided into three separate groups (i.e., A, B and C). Each

participant was asked to finish four tasks under two debugging

settings (as shown in Table VIII). For example, participants

in Group A were asked to manually repair the bugs in Task1

and Task3 and repair the bugs in Task2 and Task4 with the

help of candidate patches. To sum up, our study consisted

of 120 (30 × 4) individual debugging sessions. This scale is

significantly larger than multiple recent top-conference publi-

cations that evaluate an interactive debugging technique [22],

[47]–[49], which ranges from 20 to 48 debugging sessions.

In addition, to make the participants familiar with

debugging using InPaFer, our user study included a training

task before the formal debugging session: after we described

the corresponding terminology, participants in Group B and

C were asked to fix an irrelevant bug using InPaFer. After

the participants finished a debugging session, we manually

checked whether the fix was correct.

At the end of each debugging session, we concluded

each session with general and open-ended questions about

experience and suggestions for improvement. Specifically, for

TABLE VIII: Groups in user study I

Group (Participant ID) ManuallyFix FixWithPatches FixWithInPaFer

Group A (P1-P10) Task1+3 Task2+4 –
Group B (P11-P20) Task2+4 – Task1+3
Group C (P21-P30) – Task1+3 Task2+4

each participant, we asked questions regarding the difference

between the two debugging settings. For participants who have

debugged with InPaFer, we asked questions regarding how we

could improve.

e) Analysis: We analyzed the interviews primarily qual-

itatively, analyzing what participants learned and how they

interacted with the tool. Two of the authors transcribed and

coded the interviews, following standard methods of qualita-

tive empirical research [50].

2) Results: Participants’ Performance:
a) Success Rate: We calculated the number of sessions

in which the bugs were successfully repaired in three dif-

ferent debugging settings. Results show that our approach

(FixWithInPaFer) significantly outperformed ManuallyFix and

FixWithPatches with respectively 62.5% (p = 10−4) and

39.3% (p = 10−3) improvements (see Table IX). Specifically,

when the correct patches existed in the candidate patches,

participants could always fix the bug in the study. However, it

was not the case for FixWithPatches though the same patches

were given.

b) Debugging Time: We quantified the debugging time

(see Figure 5). The results show that: comparing to FixWith-
Patches, InPaFer could significantly shorten the debugging

time by 28.0% (p = 4 × 10−3) in all tasks; comparing to

ManuallyFix, InPaFer could reduce the debugging time by

25.3% (p = 10−5) for all tasks.

Even if all generated patches are incorrect (Task 3&4), par-

ticipants in FixWithInPaFer still perform better than in Man-
uallyFix, repairing 27% more bugs and using 13% less time.

c) Participants’ Performance and Patch Usefulness:
We notice that FixWithInPaFer does not constantly lead to

better repair performance: on Task4 participants performed

slightly worse in FixWithInPaFer than in ManuallyFix. Also,

the performance of FixWithPatches does not seem to be related

to the correctness of patches: FixWithPatches leads to better

repair performance than ManuallyFix on Task 1&3, where one

contains the correct patch and the other one does not.

One possible explanation of this is the usefulness of patches.

We observe that even if a patch is incorrect, it may still be
useful in providing hints to the participants. Nearly all

candidate patches in Task1 change the faulty code, and thus

pinpoint the faulty location to the participants. For example,

participant P23 said “the patches helped me localize to the
faulty code”. The patches in Task3, though all incorrect,

contain part of the code in the correct patch, providing hints

for the participants to figure out the correct patch. For example,

participant P22 commented “the patches provided me the API
method that I should use”. According to the interview, 14 out

of 20 participants (P11-P14, P17-P20, P22-P25, P29, P30) in

245

TABLE IX: Successful debugging sessions in user study I

Task ID ManuallyFix FixWithPatches FixWithInPaFer

Task1 1 9 10
Task2 8 6 10

Task3 5 8 10
Task4 10 5 9

Total 24 28 39

Fig. 5: Debugging time in user study I

FixWithPatches and FixWithInPaFer, who have a chance to

scan the patches, have ever mentioned that the patches in Task

1&3 helped to localize the faulty code or provide partially

correct code. On the other hand, all incorrect patches in Task2

changed the code in different and wrong locations, and the

incorrect patches in Task4 provided meaningless code which

may mislead developers.

These observations suggest that in future we should focus

on not only the correctness of the patch but also the usefulness

of the patches, i.e., whether they provide useful hints to

developers. Current measurement of APR techniques only

considers how many correct patches are generated, here we

argue that there could be a finer-grained criterion, which

further considers how much help the incorrect patches provide

to the developer.

Please note, even if all generated patches are incorrect and

not useful, i.e., Task4, FixWithInPaFer still leads to close

performance to ManuallyFix. This confirms our intuition, the

filtering process in InPaFer helps understand the bug, and

eventually contribute to the overall repair performance.

RQ2: FixWithInPaFer increases the success rate by
62.5% and 39.3% on average, and reduces the
debugging time by 25.3% and 28.0% on average,
compared to ManuallyFix and FixWithPatches, re-
spectively. Even if all generated patches are incor-
rect, the performance of developers would not be
significantly reduced, and could still be improved.

3) Results: Usefulness of InPaFer: We analyzed the inter-

views and found in multiple aspects the participants found

InPaFer useful.

a) The filtering functionality helps participants to save
patch review effort: 12 out of 20 participants (P13, P17, P20,

P22-P30) mentioned that InPaFer could help them to quickly

filter out incorrect patches. For example, P20 said “After a few
filtering steps, I only need to review a few numbers of patches,
which is reliable”.

b) Interacting with InPaFer helps participants to
understand the bug: Many participants generated the patch

by themselves, but confirmed that the filtering process helped

understand the bug. For instance, when discussing Task2,

which contains a large portion of incorrect patches, P21 said

“ I have no idea about the bug at the beginning, but I can
confirm or reject each filtering criterion. After a few steps of
filtering, I gradually understand the bug and know how to fix
the bug by myself. ” Overall, there are 16 out of 40 debugging

sessions for which participants mentioned that filtering patches

in InPaFer helps understand the bug.

c) The UI design helps participants navigate and ac-
cess key information: The Eclipse plugin (Figure 3) has

connections between elements to help the user to overview

and navigate the bugs. For example, when a concrete patch

(Panel 3) is selected, the Diff View shows the execution trace

difference before and after applying the patch. Participants

gave positive feedbacks on this design. For example, P11

mentioned that when he was working on Task3, which does

not contain the correct patch, “when I chose a Modified
Method criterion, the plugin located the bug to the equals
function, which helps me to know that the equals function
should be called. Also, the Diff View shows which branch that
the execution gets into makes the test case pass. It corrects
the previous misunderstanding.”

RQ3: We found frequent and concrete evidence of
the usefulness of InPaFer, including saving patch
review effort, better understanding the bug, and
accessing the key information.

C. User Study II (RQ4)

In the above user study, for all tasks, at least one participant

mentioned that InPaFer helped them to locate the faulty code

during the debugging process. Therefore, we ask:

RQ4: How does InPaFer compare with fault localiza-
tion techniques? If participants with InPaFer does not show

superior performance compared to participants with a fault

localization technique, the latter should be preferred as it is in

general more efficient without patch generation.

We conducted another user study, where participants were

separated into two groups – one group debugs with the aid of

InPaFer, while the other group debugs with a list of candidate

faulty locations. Particularly, we chose the statement-level bug

locations as they can provide the most comprehensive result

and also are close to those provided by InPaFer. We used

the fault localization results of the state-of-the-art technique

– CombineFL [51], which achieved the best statement-level

results on Defects4J benchmark as far as we know.

1) Study Design: The experimental setup was the same as

user study I (Section V-B) except the controlled group and

participants. We compared two debugging settings:

• FixWithLocations: repair bugs with a ranked list of pos-

sible faulty lines of code.

• FixWithInPaFer: repair bugs using InPaFer.

246

TABLE X: Groups in user study II

Group (Participant ID) FixWithLocations FixWithInPaFer

Group D (P31-P40) Task1+3 Task2+4
Group E (P41-P50) Task2+4 Task1+3

TABLE XI: Successful debugging sessions in user study II

Task ID FixWithlocations FixWithInPaFer

Task1 2 9
Task2 8 9

Task3 10 10
Task4 7 9

Total 27 37

We recruited 20 participants, including 12 students majoring

in computer science and 8 developers from companies. They

have at least one-year Java programming experience and are

familiar with debugging in Eclipse. Both students and devel-

opers were evenly divided into two groups (D and E). Each

participant was asked to finish four tasks (same as user study

I) under two debugging settings (as shown in Table X). Same

as user study I, we interviewed participants after finishing the

tasks to better understand their debugging process.

2) Result Analysis:

a) Succes Rate: In terms of success rates, as shown in

Table XI, our approach (FixWithInPaFer) significantly outper-

formed FixWithLocations by 37.0% (p = 2× 10−3).

b) Debugging Time: Figure 6 shows that there is no

significant difference regarding the cost of time for Task

3&4 (p > 0.1). It is because the faulty locations suggested

by CombineFL were ranked at the 1st and 2nd position

correspondingly. Participants also confirmed that after

checking the code in the faulty locations, it was not hard to

generate the correct patches.

In Task 1&2, the faulty locations were ranked at the 13rd

and 18th positions respectively, and thus could benefit little to

the participants. As a result, InPaFer significantly shortened

the debugging time by 34.4% (p = 4 × 10−4) comparing to

FixWithLocations. 11 out of 20 participants said that if the

top three candidate faulty locations were wrong, they would

not like to go through the location list any more. While for

the group of FixWithInPaFer, participants confirmed that

InPaFer could provide useful information more than just the

location, such as execution traces (P31, P32, P37, P38, P43),

and hints from candidate patches (P32, P34, P35, P37, P38,

P40, P47). The result indicates that patches provide more

help than faulty locations, and the extra time for generating

patches is not wasted.

RQ4: Compared to FixWithLocations, FixWithIn-
PaFer increases the success rate by 37.0%, and
reduces the debugging time by 24.2% on average.

Fig. 6: Debugging time in user study II

D. Threats to Validity

Regarding internal validity, communication issues may have

affected some answers. We mitigated this threat by refining

our interview guide when questions raised confusion and

involving two researchers in each interview. Despite open-

ended questions and careful design, we cannot entirely exclude

confirmation bias, in which participants might avoid raising

critical points. We mitigated this by focusing on insights

gained, not just claims.

Regarding external validity, first, we focused on 4 tasks in

the Defects4J dataset whereas results may not be generalized

to all other cases. Yet please note that it is inherently difficult

to increase the number of tasks in user studies and the number

of tasks in our user studies is already the largest among multi-

ple recent top-conference publications that evaluate an interac-

tive debugging technique (1-4 tasks) [22], [47]–[49]. To miti-

gate this threat, we did not rely on only the statistical results

of the 4 tasks, but also analyzed the reason of the performance

differences between different tasks in detail. Additionally, we

argue that the 4 tasks are representative in terms of InPaFer
performance in RQ1. Among the 4 tasks, InPaFer can filter

out all incorrect patches in three of them, with the filtering

steps among 2 to 4.8. Second, our studies may suffer from a

selection bias of the participants, as common for these kinds of

studies. To reduce selection bias, we recruited participants in

public channels and randomly assigned them into five groups.

To avoid effects due to differences between real developers

who are familiar with the project and students in our user

studies, we designed the tasks in a way that basic debugging

experience was sufficient and did not need specific domain

knowledge. Overall we selected participants with different

backgrounds and did not observe any systematic differences.

In total, we have conducted 200 debugging sessions for our

user studies, which are signficantly more than what are used to

evaluate an interactive debugging techniques (20-48 debugging

sessions) in recent top-conference publications [22], [47]–[49],

and we argue that a state of saturation was reached in the

end. Finally, in the quantitative study, we simulated the patch

filtering process under eight strategies (the other seven are

shown in Appendix), but there could be cases that are not

covered. To mitigate this, we run our experiment ten times.

Please also note that the goal of the quantitative evaluation

is to measure the effectiveness of the filtering criteria using

some metrics, and the effectiveness and usefulness of InPaFer
are evaluated by user studies.

247

VI. RELATED WORK

A. Effect of Patches

Existing studies investigated the effects of providing patches

to developers during debugging, including providing a single

patch [19], five patches together [20], partial repair [21] or re-

pair hints [22]. The findings of these studies are consistent: the

developers’ repair performance of a bug could improve when

they are provided with only correct patches, but the improve-

ment disappears and even becomes negative when the provided

patches contain incorrect ones. Compared with them, our study

is the first to consider the effect of tool support, and finds that

good tool support could mitigate the negative effect of incor-

rect patches, such that the performance of developers could

still improve when they are provided with incorrect patches.

B. Interactive Repair

Some recent studies tried to involve developers in the

program repair process. There was a in-parallel position

paper [52], which proposed an interactive patch suggestion

paradigm based on what and how questions. Our work shares

a vision similar to this paper, but further implements an

Eclipse plugin, and conducts non-trivial user studies that reveal

insights why the interactive filtering process works. Further-

more, different from our approach that asks the developers

to validate attributes, the position paper proposes to ask what

questions: “what should be the output of this expression?” It

is yet unknown whether such what questions are easy for the

developers to answer.

Cashin et al. [44] clustered a set of generated patches by

program invariants. Developers ideally need only examine one

patch per cluster. Compared with their approach, our approach

actively asks developers to confirm or reject the filtering

criteria rather than clusters the patches. These two kinds of

support are orthogonal, and can be potentially combined to

further support patch review in future.

Böhme et al. [45] queried developers to build a test oracle

before patch generation to overcome overfitting. Compared

with that, our study focuses on the patch review process after

patch generation, and helping developers find a patch rather

than helping the automated system.

C. Interactive Debugging

Many interactive debugging techniques [43], [47]–[49],

[53]–[56] leveraged user feedback to localize faults. Algorith-

mic debugging [53] built a tree of method invocations for a

failed test, and then repeatedly asked developers questions to

prune the tree for fault localization. Li et al. [48] improved

algorithmic debugging by leveraging spectrum-based fault

localization (SBFL) and dynamic dependencies to optimize the

order of method invocations to be questioned. Gong et al. [56]

improved SBFL by asking developers to label the statements

as faulty or clean, and updating the suspicious statement list.

Johnson et al. [43] helped developers to understand the root

cause of a bug by identifying most-similar passing tests to

original failing tests. Ko and Myers proposed Whyline [49],

[54], [55], which explained bug according to the dynamic

slicing until the developer finds the root cause of the fault. Lin

et al. [47] improved Whyline by allowing developers to select

the trace execution pattern and using developer’s feedback to

recommend some suspicious traces.
Different from these techniques, our approach aims to help

patch review by interactive patch filtering, rather than im-

proving the fault localization. Our study indicates that patches

provide more help than suspicious faulty locations.

D. Patch Correctness Identification
Multiple existing approaches automatically identified the

correctness of patches. Some approaches adopted a determinis-

tic way by generating new test cases and identifying incorrect

patches which violate oracles [57] or cause crash/memory-leak

errors [58], [59]. Other approaches adopted a heuristic rule,

such as anti-patterns [60] or the behavior similarity of test

case executions [61]. However, these techniques still cannot

filter out all incorrect patches and guarantee the correctness

of remaining patches. As a result, manual check will be a

must. Our approach can be combined with these techniques

and help developers to better understand the bug.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we have investigated the question: would

an APR approach be useful if multiple incorrect patches are

generated along with the correct patches, and proposed an

interactive patch filtering approach, InPaFer, which contains a

two-stage algorithm, to provide tool support for patch review.

We have implemented our approach as an Eclipse plugin.

The results show that our approach improves the repair

performance of developers with 62.5% more successfully

repaired bugs and 25.3% less debugging time on average.

This confirms our conjecture: with proper tool support, the

patch review process helps understand the bug, and eventually

contributes to debugging.
Our findings open doors to multiple possibilities of future

APR research directions, and we highlight two below.
(1) APR techniques could target more bugs by loosing

the correctness requirement and generating more patches.
Existing approaches usually try to generate a single patch per

bug in order not to overwhelm the developer [28], [30], but

our results suggest that with proper tool support, APR tools

that generates a lot of incorrect patches can still be useful. We

advocate that future APR techniques could focus on improving

the recall without avoiding generating many incorrect patches.

For example, they could target more bugs by expanding the

search space and broadening the generation condition, and

InPaFer ensures the mixture of incorrect and correct patches

still improve the repair performance of developers.
(2) The measurement of APR techniques could consider

not only the correctness, but also the usefulness of patches
for developers. Our study reveals that incorrect patches can

also help the developers to repair bugs, which suggests that

more work is needed to fully understand and characterize patch

quality. Future evaluation on APR techniques should consider

not only patch correctness, but also the usefulness in providing

hints to the devleopers.

248

REFERENCES

[1] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” TSE, vol. PP, no. 99, pp. 1–1, 2017.

[2] M. Monperrus, “Automatic Software Repair: a Bibliography,”
Tech. Rep., 2017. [Online]. Available: https://hal.archives-ouvertes.
fr/hal-01206501/file/survey-automatic-repair.pdf

[3] https://github.com/SerVal-DTF/FL-VS-APR/tree/master/kPAR.
[4] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “AVATAR: fixing

semantic bugs with fix patterns of static analysis violations,” in Proceed-
ings of the 26th IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 2019, pp. 456–467.

[5] X.-B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in SANER, 2016, pp. 213–224.

[6] J. Xuan, M. Martinez, F. Demarco, M. Clément, S. Lamelas, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic repair of conditional
statement bugs in java programs,” TSE, 2017.

[7] X. D. Le, D. Chu, D. Lo, C. L. Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8,
2017. ACM, 2017, pp. 593–604.

[8] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
Paderborn, Germany, September 4-8, 2017. ACM, 2017, pp. 727–739.

[9] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: a large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936–1964, 2017.

[10] K. Wang, A. Sullivan, and S. Khurshid, “Automated model repair for
alloy,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018. ACM, 2018, pp. 577–588.

[11] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Sketchfix: a tool for
automated program repair approach using lazy candidate generation,”
in Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018. ACM, 2018, pp. 888–891.

[12] ——, “Towards practical program repair with on-demand candidate
generation,” in Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018. ACM, 2018, pp. 12–23.

[13] M. Endres, G. Sakkas, B. Cosman, R. Jhala, and W. Weimer, “Infix:
Automatically repairing novice program inputs,” in 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 2019, pp.
399–410.

[14] T. Nguyen, W. Weimer, D. Kapur, and S. Forrest, “Connecting program
synthesis and reachability: Automatic program repair using test-input
generation,” in Tools and Algorithms for the Construction and Analysis
of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I,
ser. Lecture Notes in Computer Science, vol. 10205, 2017, pp. 301–318.

[15] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun, “Do automated
program repair techniques repair hard and important bugs?” in Proceed-
ings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 2018, p. 25.

[16] A. Weiss, A. Guha, and Y. Brun, “Tortoise: interactive system config-
uration repair,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana,
IL, USA, October 30 - November 03, 2017. IEEE Computer Society,
2017, pp. 625–636.

[17] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs with
semantic code search (T),” in 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, Lincoln, NE, USA,
November 9-13, 2015. IEEE Computer Society, 2015, pp. 295–306.

[18] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for multi-
hunk program repair,” in Proceedings of the 41st International Confer-
ence on Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019. IEEE / ACM, 2019, pp. 13–24.

[19] Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated patches
as debugging aids: a human study,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, (FSE-22), Hong Kong, China, November 16 - 22, 2014. ACM,
2014, pp. 64–74.

[20] J. P. Cambronero, J. Shen, J. Cito, E. Glassman, and M. Rinard, “Char-
acterizing developer use of automatically generated patches,” in 2019
IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2019, Memphis, Tennessee, USA, October 14-18, 2019. IEEE
Computer Society, 2019, pp. 181–185.

[21] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury,
“A feasibility study of using automated program repair for introductory
programming assignments,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
Paderborn, Germany, September 4-8, 2017. ACM, 2017, pp. 740–751.

[22] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “Minthint: auto-
mated synthesis of repair hints,” in 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07,
2014. ACM, 2014, pp. 266–276.

[23] F. Long and M. Rinard, “An analysis of the search spaces for generate
and validate patch generation systems,” in ICSE, 2016, pp. 702–713.

[24] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in FSE, 2015,
pp. 532–543.

[25] X. D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting in semantics-
based automated program repair,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018.

[26] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” ser. ISSTA, 2015, pp. 24–36.

[27] A. Roychoudhury and Y. Xiong, “Automated program repair: a
step towards software automation,” Sci. China Inf. Sci., vol. 62,
no. 10, pp. 200 103:1–200 103:3, 2019. [Online]. Available: https:
//doi.org/10.1007/s11432-019-9947-6

[28] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in ICSE, 2017.

[29] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in ICSE, 2018.

[30] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in ISSTA, 2018.

[31] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for
automated program repair,” ser. ASE, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3155562.3155644

[32] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object oriented program repair,” in ASE. IEEE Press, 2017. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155643

[33] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in ISSTA,
2014, pp. 437–440.

[34] M. Martinez and M. Monperrus, “Ultra-large repair search space with
automatically mined templates: The cardumen mode of astor,” in Search-
Based Software Engineering - 10th International Symposium, SSBSE
2018, Montpellier, France, September 8-9, 2018, Proceedings, ser.
Lecture Notes in Computer Science, vol. 11036. Springer, 2018, pp.
65–86.

[35] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” TSE, vol. 38, no. 1, pp.
54–72, Jan 2012.

[36] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of ISSTA, 2016.

[37] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in International Symposium on Software Testing and
Analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012. ACM,
2012, pp. 177–187.

[38] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in ICSE, 2009, pp. 364–
374.

[39] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. L.
Traon, “You cannot fix what you cannot find! an investigation of fault
localization bias in benchmarking automated program repair systems,” in
12th IEEE Conference on Software Testing, Validation and Verification,
ICST 2019, Xi’an, China, April 22-27, 2019. IEEE, 2019, pp. 102–113.

[40] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in ICSE, 2013, pp. 802–811.

249

[41] Z. Chen and M. Monperrus, “The remarkable role of similarity in
redundancy-based program repair,” CoRR, vol. abs/1811.05703, 2018.
[Online]. Available: http://arxiv.org/abs/1811.05703

[42] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” ArXiv e-prints, Jul. 2017.

[43] B. Johnson, Y. Brun, and A. Meliou, “Causal testing: Finding defects’
root causes,” in Proceedings of the 42th International Conference on
Software Engineering, ICSE 2020, Seoul, South Korea, October 5-11,
2020, 2020.

[44] P. Cashin, C. Martinez, W. Weimer, and S. Forrest, “Understanding
automatically-generated patches through symbolic invariant differences,”
in 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019.
IEEE, 2019, pp. 411–414.

[45] M. Böhme, C. Geethal, and V. Pham, “Human-in-the-loop automatic
program repair,” in 13th IEEE International Conference on Software
Testing, Validation and Verification, ICST 2020, Porto, Portugal, October
24-28, 2020. IEEE, 2020, pp. 274–285.

[46] GitHub, “Inpafer’s repository that contains the implementation and the
data used in this study.” https://github.com/Emilyaxe/InPaFer-ICSME,
2021.

[47] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. S. Dong, “Feedback-based
debugging,” in Proceedings of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-
28, 2017. IEEE / ACM, 2017, pp. 393–403.

[48] X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,”
in Proceedings of the 40th International Conference on Software En-
gineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.
ACM, 2018, pp. 82–92.

[49] A. J. Ko and B. A. Myers, “Debugging reinvented: asking and an-
swering why and why not questions about program behavior,” in 30th
International Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008. ACM, 2008, pp. 301–310.

[50] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.

[51] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, 2018.

[52] X. Gao and A. Roychoudhury, “Interactive patch generation and sugges-
tion,” in Proceedings of the 1st International Workshop on Automated
Program Repair. IEEE / ACM, 2020.

[53] R. Caballero, A. Riesco, and J. Silva, “A survey of algorithmic debug-
ging,” ACM Comput. Surv., pp. 60:1–60:35, 2017.

[54] A. J. Ko and B. A. Myers, “Finding causes of program output with the
java whyline,” in Proceedings of the 27th International Conference on
Human Factors in Computing Systems, CHI 2009, Boston, MA, USA,
April 4-9, 2009. ACM, 2009, pp. 1569–1578.

[55] ——, “Designing the whyline: a debugging interface for asking ques-
tions about program behavior,” in Proceedings of the 2004 Conference
on Human Factors in Computing Systems, CHI 2004, Vienna, Austria,
April 24 - 29, 2004. ACM, 2004, pp. 151–158.

[56] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization
leveraging simple user feedback,” in 28th IEEE International Conference
on Software Maintenance, ICSM 2012, Trento, Italy, September 23-28,
2012. IEEE Computer Society, 2012, pp. 67–76.

[57] Q. Xin and S. Reiss, “Identifying test-suite-overfitted patches through
test case generation,” in ISSTA, 2017, pp. 226–236.

[58] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for better
automated program repair,” in FSE, 2017, pp. 831–841.

[59] X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding program
repair,” in Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2019, Beijing, China,
July 15-19, 2019. ACM, 2019, pp. 8–18.

[60] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in FSE, 2016.

[61] Y. Xiong, X. Liu, M. Z. andz Lu Zhang, and G. Huang, “Identifying
patch correctness in test-based program repair,” in Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 2018, pp. 789–
799.

250

