
Mutation-based Test-Case Prioritization
in Software Evolution

Yiling Lou, Dan Hao∗, Lu Zhang
Key Laboratory of High Confidence Software Technologies (Peking University), MoE, China

Institute of Software, School of EECS, Peking University, China
Email: {yilinglou,haodan,zhanglucs}@pku.edu.cn

Abstract—During software evolution, to assure the software
quality, test cases for an early version tend to be reused
by its latter versions. As a large number of test cases may
aggregate during software evolution, it becomes necessary to
schedule the execution order of test cases so that the faults
in the latter version may be detected as early as possible,
which is test-case prioritization in software evolution. In this
paper, we proposed a novel test-case prioritization approach
for software evolution, which first uses mutation faults on the
difference between the early version and the latter version to
simulate real faults occurred in software evolution, and then
schedules the execution order of test cases based on their fault-
detection capability, which is defined based on mutation faults. In
particular, we present two models on calculating fault-detection
capability, which are statistics-based model and probability-based
model. Moreover, we conducted an experimental study and found
that our approach with the statistics-based model outperforms
our approach with the probability-based model and the total
statement coverage-based approach, and slightly outperforms the
additional statement-coverage based approach in many cases.
Furthermore, compared with the total or additional statement
coverage-based approach, our approach with either the statistics-
based model or the probability-based model tends to be stably
effective when the difference on the source code between the
early version and the latter version is non-trivial.

I. INTRODUCTION

During software evolution, programmers modify an early
version of a project and get its latter version due to the
following reasons, improving software quality, adding a new
functionality, modifying existing functionalities, and so on [1],
[2]. Although the early version may have been fully tested, it
is still necessary to test the latter version because modification
on the early version may induce faults. To test the latter version
efficiently, it is natural to reuse the existing test cases designed
for the early version so as to reduce the cost on test-case
generation for the latter version.

On the other hand, in software evolution, the number of test
cases grows rapidly. Let us take Time&Money1 as an example.
In software evolution, from Time&Money 0.2 to Time&Money
0.3, the number of test cases increases from 104 to 146 (about
40.38%). That is, due to the rapid growth on test cases, a
project may have an extremely large set of test cases. However,
in some testing scenarios, the testing resources (e.g., time and
efforts) are limited, and thus it is necessary to schedule the

∗Corresponding author
1Time&Money is an open-source project, which is used in the evaluation

of previous work [3] and available at http://timeandmoney.sourceforge.net.

execution order of test cases so as to detect faults as early
as possible. That is, test-case prioritization is important in
software evolution.

Although various test-case prioritization approaches have
been proposed in the literature [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], these approaches may be
not effective in software evolution. Typically, these approaches
prioritize test cases mainly based on some structural coverage
(e.g., statement coverage [17] or method coverage [18]) of
an early version. However, in software evolution, the different
source code between the early version and the latter version
is usually non-trival. For example, from Time&Money 0.2
to Time&Money 0.3, the number of executable statements
increases from 1,059 to 1,403. That is, in the evolution of
Time&Money, about 50% of the code is added to an early
version. Therefore, it may be not effective to prioritize test
cases based on just the coverage information of an early
version. Although some approaches [19], [13], [12], [20]
prioritize test cases based on the coverage of change occurring
in software evolution, such change is not necessarily related to
faults occurring in software evolution, and thus these change
based approaches may be not effective either.

Furthermore, the existing test-case prioritization approaches
are mostly evaluated in an unreal testing scenario [18], [3],
[21], [17], [7], [22], [23]. In particular, in their evaluation,
the latter versions are usually not collected from practice, but
manually constructed by adding faults in the early version [18],
[3], [21]. Furthermore, their proposed approaches are evaluated
based on detecting the same faults [18], [3], [21]. Although
this testing scenario is far from real, it is widely used in test-
case prioritization. As test-case prioritization has the preceding
effectiveness and evaluation issues, in this paper, we plan
to present a practical test-case prioritization approach for
software evolution and evaluate the proposed approach in real
software evolution scenarios.

Intuitively, test cases revealing faults in the latter version
should be executed early. As reported by previous work [24],
[25], mutation faults generated in mutation testing can serve
as the substitute for real faults, and thus we may use mutation
faults to simulate real faults in the latter version and then use
mutation faults to guide test-case prioritization. Furthermore,
the latter version is modified based on an early version, which
tends to be fully tested. Therefore, the faults in the latter
version mostly come from the modification from the early

46978-1-5090-0406-5/15/$31.00 ©2015 IEEE

version to the latter version.
Based on the preceding intuition, in this paper, we present

a mutation-based test-case prioritization approach in software
evolution. For any two versions of a project, which are denoted
as P0 and P1, the set of test cases designed for P0 and used
to test P1 is denoted as T . The proposed mutation-based test-
case prioritization approach takes the source code of P0 and
P1 as input, and outputs the prioritized test suite for P1. The
proposed approach first calculates the fault-detection capability
of each test case based on its number of killing2 mutants which
occur on the difference between P0 and P1, and then prioritizes
test cases in T based on their fault-detection capability. In
particular, in the proposed approach, we present two models
(i.e., statistics-based model and probability-based model) on
calculating the fault-detection capability of test cases using
their killing mutants. The statistics-based model calculates the
fault-detection capability of a test case based on the number of
mutants killed by the test case, whereas the probability-based
model calculates the fault-detection capability of a test case
considering the distribution of mutants.

To evaluate the effectiveness of the proposed approach, we
conducted an experimental study on 14 versions of 3 open-
source Java projects by comparing the total and additional
coverage-based approaches, which are usually used as the
control approaches in previous work [26], [3]. As the Java
projects in the experimental study use JUnit testing framework,
each JUnit test case has two levels of test cases: test-method
level and test-class level. Therefore, our experimental study
uses the two levels of test cases as two granularities of test
cases. From the experimental results, when prioritizing test
cases at the test-method level, our approach with the statistics-
based model significantly outperforms our approach with the
probability-based model and the total approach, and is slightly
more effective than the additional approach without significant
difference. Furthermore, our approach is more effective when
prioritizing test cases at the test-method level than at the
test-class level. Moreover, even if non-trivial changes occur
from the early version to the latter version, our approach is
still steady, especially compared with the total and additional
coverage-based approaches.

The contributions of the paper are summarized as:

• A novel test-case prioritization approach for software
evolution, which prioritizes test cases based on their
killing mutants on the different statements between the
early version and the latter version.

• An experimental study showing that the proposed ap-
proach is more effective than the total approach, and
competitive compared with the additional approach.

2In mutation testing, mutants are generated by performing some mutation
operators (e.g., deleting a statement and replacing a constant with another
one) on the program. That is, a mutant can be viewed as a faulty program.
For any test case t, if the original program behaves different from a mutant,
this mutant is said to be killed by the test case t.

II. APPROACH

In software evolution, it is natural to reuse existing test
cases of an early version for its latter version because the two
versions belonging to the same project and their source codes
have similarity. As the early version is usually tested, faults
in the latter version mostly lie in the difference between the
two versions. Furthermore, as mutants generated by mutation
testing can be representative of real faults [24], [25], we may
use mutation faults in the difference to simulate real faults in
software evolution.

Based on the preceding intuition, we present a mutation-
based test-case prioritization approach, which schedules the
execution order of test cases based on their killing mutants
that occur on the modification. P0 represents an early version
and P1 represents its latter version. In the test suite designed
for testing P0, some test cases cannot be used in testing P1

because compiling errors may occur when running the test
cases on P1. By removing these test cases, we get the set
of test cases that are designed for P0 and can be used to
test P1, which is denoted as T . The mutation-based test-case
prioritization approach proposed in this paper aims to schedule
the execution order of test cases in T to test P1.

In particular, the proposed approach consists of the follow-
ing steps. First, our approach identifies modification on the
original program (see Section II-A). Second, our approach
generates mutants whose mutation operators occur on only the
modification (see Section II-B). Third, our approach schedules
the execution order of test cases based on their fault-detection
capability (see Section II-C).

A. Modification Identification

For any two versions in software evolution P0 and P1, the
proposed approach compares the source code of P0 and P1 by
using some tools (e.g., the diff command provided by Linux
Operating System), and maps the difference on the source code
of P0. The difference between P0 and P1 can be classified into
the following categories: (1) source code that lies in P0, but
not in P1, (2) source code that lies in P0 and P1, but they are
slightly different, and (3) source code that does not lie in P0,
but appears in P1.

For ease of representation, we represent the modification in
the granularity of statements, which can also be represented
in other granularities (e.g., methods and classes, discussed in
Section IV). Using the granularity of statements to represent
modification, the preceding three types of modification can be
represented by (1) deleting statements in P0, (2) modifying
statements in P0, and (3) adding statements to P0.

The problem of test-case prioritization is proposed for at
least one purpose, efficiency. Therefore, it is important to
take efficiency into consideration while designing a new test-
case prioritization approach. As it is costly to generate and
run mutants [27], [28], the proposed approach is designed to
prioritize test cases based on the mutants of P0 rather than P1

so that in software evolution programmers can reuse the results
of mutant execution on an early version. This also explains

47

why the proposed approach maps the preceding modification
to the source code of P0 rather than that of P1.

In particular, for some modification belonging to (1) or
(2), the proposed approach labels the modification by the
corresponding statement (i.e., the deleted statement in P0 or
the modified statement in P0). For a modification belonging to
(3), it is hard to label the modification by the corresponding
statement in P0 because the added statement does not exist
in P0. To label such modifications, currently the proposed
approach labels the statement whose position in the program
appears just before the added statement. For example, if the
statement should be added to just after the statement s, the
proposed approach labels this added statement by s3. However,
this label is not precise, and we will discuss this in Section IV.

Through the preceding process, the proposed approach
labels the difference between P0 and P1, which is a set of
statements in P0 and denoted as △P .

B. Mutant Generation

As mutation faults can be representative of real faults in
software testing [24], [25], a test case with high capability
on detecting mutation faults may have high capability on
detecting real faults [17]. Based on this intuition, we simulate
real faults in software evolution by mutants. Furthermore, as
the early version P0 is usually tested, the faults in P1 usually
come from the difference between P0 and P1. Therefore,
the proposed approach generates mutants whose mutation
operators occur on only the statements in △P .

In implementing the proposed approach, it is hard to use
any existing mutation tool (e.g., Javalanche [29]) by specifying
the statements where mutation operators occur. Therefore, in
implementing we actually generate all the mutants for P0 and
then select the mutants whose mutation operators occur on the
statements in △P . Note that in the remaining of this paper,
without explicit explanation, the mutants are referred to those
whose mutation operators occur on the statements in △P .

C. Execution-Order Scheduling

For each selected mutant, the proposed approach records
whether it is killed by each test case within T , which is used
to calculate the fault-detection capability. Then the proposed
approach schedules the execution order of test cases based on
the descendent order of their fault-detection capability.

In particular, we present two models on defining the fault-
detection capability based on the mutants test cases kill. The
first one is statistics-based model, which calculates the fault-
detection capability of a test case based on the total number of
mutants it kills. The second one is probability-based model,
which calculates the fault-detection capability of a test case
considering the distribution of mutants.

1) Statistics-based Model: Intuitively, the more mutants a
test case kills, the higher probability a test case may have
on detecting real faults in P1. Therefore, we can use the total

3Using the diff command, we can know the position that the added
statement is supposed to be added in P0.

number of mutants a test case kills to define its fault-detection
capability.

Supposed that through the process described in Section II-B
there are totally N mutants, which are denoted by m1, m2,
. . ., mN , and test suite T consists of M test cases, which
are denoted by t1, t2, . . ., tM . We use a Boolean matrix K
to represent whether a mutant is killed by a test case in T .
That is, the value of any element in K (denoted as K[i][j])
represents whether a mutant mi (1 ≤ i ≤ N) is killed by a
test case tj (1 ≤ j ≤ M). If the test case tj kills the mutant
mi, K[i][j] is 1; otherwise, K[i][j] is 0.

Based on the matrix K, the fault-detection capability of
any test case tj , which is denoted as weight(tj), is defined
as follows in the statistics-based model.

weight(tj) =
N∑

i=1

K[i][j] (1)

For any test case tj , the more mutants it kills, the higher
weight(tj) is, and the higher probability it has on detecting
faults in P1.

2) Probability-based Model: As faults in P1 mostly lie in
the modified statements between P0 and P1 (i.e., △P), the
fault-detection capability of a test case can be calculated based
on its capability in detecting mutation faults in each statement
in △P .

The mutants generated for △P are not evenly distributed
in statements. For example, in JAVA programs, the statement
“if(x==y)” tends to have more mutants (e.g., “if(x<=y)”,
“if(x>=y)”) than the statement “system.out.println(“error!”)”.
That is, some types of statements have many mutants, whereas
some do not. Considering the uneven distribution of mutants,
the proposed approach first groups the mutants whose mutation
operators occur on the same statement into one group and then
estimates how likely a test case tj detects the faults in one
statement (denoted as si) based on the following two numbers:
(1) the number of mutants whose mutation operators occur on
this statement (denoted as Numt(i, j)), and (2) the number
of mutants whose mutation operators occur on this statement
and that are killed by tj (denoted as Numk(i, j)). That is,
how likely tj detects faults in si, which is denoted as P (i, j),
is defined as follows.

P (i, j) =
Numk(i, j)

Numt(i, j)
(2)

Then the probability-based model calculates the fault-
detection capability of a test case based on how likely this
test case detects faults in all the statements of △P . Supposed
that the set of statements in △P can be represented by
△P={s1, s2, . . ., sD}, the probability-based model defines
the fault-detection capability of any test case tj according to
the following equation.

weight(tj) =
D∑

i=1

P (i, j)/D (3)

For any test case, its fault-detection capability defined by
the probability-based model is between 0 and 1. From the

48

preceding equation, the fault-detection capability of a test case
is defined based on how likely this test case detects faults in
each statement averagely. The higher probability a test case
has on detecting faults in each statement, the larger its fault-
detection capability is.

III. EXPERIMENTAL STUDY

To evaluate the proposed approach, we perform an experi-
mental study to answer the following research questions.

1) RQ1: Is the proposed approach more effective than
the total and the additional coverage-based approaches,
when prioritizing test cases at different levels (i.e., test-
method level or test-class level)?

2) RQ2: Which model (i.e., statistics-based model or
probability-based model) makes the proposed approach
more effective, when prioritizing test cases at different
levels (i.e., test-method level or test-class level)?

A. Subjects, Test Cases, and Faults
In the experiment, we used 14 versions of 3 Java projects,

which have been widely used in the literature of test-case
prioritization [26], [3]. In particular, we used 5 versions
of Jgrapht4 (JGT), 2 versions of Xmlsecurity5 (XS), and 7
versions of Jodatime6 (JT).

In this experimental study, we collected more than one
versions for each project. For each project, we used its earliest
version collected as an early version, and used its other
versions as latter versions in software evolution. That is, each
latter version is taken as a subject in this experimental study
and test-case prioritization in software evolution aims to sched-
ule the execution order of test cases on such subjects. Note that
considering the cost of mutation testing, the proposed approach
is evaluated based on an early version and its several latter
versions rather than two successive versions, which will be
discussed in Section IV. To simulate test-case prioritization in
software evolution, we used only the test cases of the early
version as the input of test-case prioritization. However, some
test cases of the early version become obsolete test cases and
thus cannot be used to test the latter version. Therefore, we
manually removed these obsolete test cases [30].

It is hard for us to collect real faults in software evolution
because programmers tend to deliver projects with few or no
faults. Therefore, we manually constructed faults in software
evolution by using mutation faults. As faults in software
evolution usually come from the modification and mutation
faults may substitute real faults in software testing [24], [31],
[32], we generated mutation faults on the difference between
the early version and the latter version. In particular, for each
latter version, we first generated all mutants using a mutation
tool Javalanche [29], and then removed the mutants whose
mutation operators occur on the statements that are not in the
modification between the early version and the latter version.
Following this process, for each latter version, we generated a

4http://www.jgrapht.org
5http://xml.apache.org/security
6http://joda-time.sourceforge.net

TABLE I
SUBJECTS

Subject Source Code Under Test Test Case Group
LOC Class Method Class Method

JG 5.0 2,393 72 321 18 48 –
JG 5.1 3,248 88 393 18 45 8
JG 5.2 3,609 89 411 17 39 8
JG 5.3 3,670 90 413 17 39 8
JG 6.0 4,098 96 474 16 27 7
XS 1.2.0 16,138 154 1,077 27 97 –
XS 1.2.1 16,218 154 1,074 27 93 5
JT 1.0 20,241 177 2,561 80 2,117 –
JT 1.2 22,149 182 2,722 60 1,401 19
JT 1.3 24,001 188 3,079 60 1,401 36
JT 1.4 25,292 196 3,242 60 1,396 106
JT 1.5 25,795 198 3,279 43 1,082 85
JT 1.5.2 25,807 198 3,276 43 1,081 13
JT 1.6 25,879 198 3,288 43 1,081 17

number of mutants, which can be viewed as faults induced in
software evolution. Then as previous work [3], we constructed
a number of multiple-fault programs, each of which is a group
of five randomly selected mutants which have never been
selected before. Each mutant group is viewed as a program
with five faults.

Note that the mutants used to implement the proposed
approach are different from the mutants used in the evaluation.
In the former process we used mutants generated based on the
early version, whereas in the latter process we used mutants
generated based on the latter version due to the following
reasons. Test-case prioritization in software evolution is pro-
posed to improve the testing efficiency of the latter version
by scheduling the execution order of test cases. Therefore,
the input of test-case prioritization intuitively cannot contain
the execution information on the latter version, even if the
execution information of the mutants on the latter version. That
is, to guide test-case prioritization, we cannot use the mutants
generated for the latter version, but the mutants generated for
the early version. On the other side, test-case prioritization
proposed in this paper targets at software evolution, and thus
the prioritized test cases should be evaluated on the latter
version. Therefore, the mutants used in the evaluation should
be generated based on the latter version.

Table I presents the basic statistics of these subjects, whose
last three columns present the statistics on the test code actu-
ally used in the experimental study and the number of mutant
groups. As the mutant groups are constructed to simulate faults
for latter versions, the number of mutant groups for each early
version is marked as “–” in the table.

B. Independent Variables

The independent variables include the compared approaches
and the granularities of test cases.

• Compared Approaches: Besides the proposed approach
based on the statistics-based model and the proposed approach
based on the probability-based model, we also implemented
the total and additional approaches, as they are widely used as
the control technique in test-case prioritization [3]. Moreover,
as discovered so far [3], none of these existing test-case
prioritization approaches outperform the additional strategy. In

49

particular, the total coverage-based test-case prioritization ap-
proach schedules the execution order of test cases based on the
descendent order of their coverage information (e.g., statement
coverage), whereas the additional coverage-based test-case pri-
oritization approach schedules the execution order of test cases
based on the descendent order of their incremental coverage
information (e.g., statement coverage) [17]. Furthermore, to
learn the upper bound of test-case prioritization, we implement
the optimal test-case prioritization approach [23], which
prioritizes test cases based on the descendent order of faults
they actually detect. Note that this optimal approach is not
a practical approach, because it is impossible to know which
faults will be detected by each test case before running these
test cases. That is, this optimal approach also serves as the
control approach in the evaluation.
• Granularities of Test Cases: The subjects used in the

experimental study are all written in Java and are tested using
the JUnit testing framework. In the JUnit testing framework,
there are two levels of test cases: test-method level and test-
class level. To investigate the impact of test-case granularities,
similar to previous work [3], in this experimental study we
evaluate the effectiveness of the proposed test-case prioritiza-
tion using test cases at the test-method level and test cases at
the test-class level.

C. Dependent Variables

The dependent variable concerns with the effectiveness mea-
surement. In the experiment, we use Average Percentage Faults
Detected (abbreviated as APFD) [23] as a measurement, which
is widely used in the prior work of test-case prioritization [5],
[7]. For any prioritized test suite T ′, the larger its APFD value
is, the more effective the corresponding test-case prioritization
approach is.

For any test suite T , its prioritized test suite denoted as T ′,
we calculate the APFD value of T ′ as follows.

APFD = (

∑n−1
i=1 Fi

n ∗m +
1

2n
) ∗ 100% (4)

In the equation, n is the number of test cases in T ′, m is
the number of faults detected by the test cases in T , Fi is
the number of faults detected by at least one test case among
the first i test case in T ′. For any prioritized test suite T ′, the
larger its APFD value is, the more effective the corresponding
test-case prioritization approach is.

D. Process

For each project, we took its earliest version as the early
version and used the other versions as the latter versions.
In software evolution, some test cases designed for an early
version cannot be used to test its latter versions because
compiling errors occur while running these test cases on the
latter versions. These obsolete test cases [30] cannot be used
to test the latter version directly, and thus the authors of this
paper manually removed these test cases before evaluating the
proposed approach.

For each latter version we applied the five test-case pri-
oritization approaches to the set of test cases based on the
following process.

As the input of the total and the additional approaches
is the statement coverage of test cases, we first collected
the statement coverage of test cases on the early version by
instrumention, which is implemented with the ASM bytecode
manipulation framework7. Based on the statement coverage,
we applied the total and the additional approaches to the test
cases at the test-method level as well as the test cases at
the test-class level, and recorded the prioritized results (i.e.,
prioritized test cases).

Furthermore, to each set of test cases we applied the
proposed mutation-based test-case prioritization approach. In
implementing the proposed approach, we used the “diff”
command provided by Linux Operating System to identify
the different statements between each pair of early version
and latter version. Moreover, we use a mutation testing tool
Javalanche [29] to generate mutation faults for the early ver-
sions, some of which are used to guide test-case prioritization.

To learn whether the compared test-case prioritization ap-
proaches are effective, we constructed a number of faulty
versions based on each latter version to simulate real faults
in software evolution based on the following process. First,
we generated all the mutants for each latter version using
Javalanche. As faults in software evolution mostly lie in the
difference between the two versions, we removed the mutants
whose mutation operators occur on not the difference between
the versions. That is, only the mutants whose mutation opera-
tors occur on the difference are taken as possible faults induced
in software evolution. To construct multiple-fault programs, we
randomly selected five mutants that are not selected before
and constructed a mutant group consisting of five mutants.
Each mutant group is viewed as a multiple-fault latter version.
Following this random selection process, we constructed a
number of multiple-fault latter version.

Based on each multiple-fault program, we calculated the
APFD value for a prioritized result. Furthermore, we applied
the optimal test-case prioritization approach to each set of test
cases based on the faults within each multiple-fault program.

E. Threats to Validity

The main threat to internal validity lies in the implemen-
tation of the compared prioritization approaches. To reduce
this threat, the authors of this paper reviewed all the code to
guarantee its correctness.

The main threat to external validity lies in the subjects,
faults, and test cases used in the experimental study. To reduce
the threat resulting from the subjects, we used several large
Java projects, which have been widely used in prior work [3].
However, these subjects may not be representative for other
programs, especially programs in other languages. To reduce
the threat resulting from the faults, we used mutation faults
to simulate real faults because existing work shows that the

7http://asm.ow2.org

50

mutation faults may be valid substitutes for real faults [24],
[25]. Furthermore, to simulate faults in software evolution, we
used mutation faults whose mutation operators occur on only
the difference between versions. To reduce the threat resulting
from the test cases, we used the test cases suited by each
project. However, manually removing obsolete test cases may
induce external threat.

The main threat to construct validity lies in the measurement
used in the experimental study. To reduce this threat, we
used APFD measurement, which is widely used in test-case
prioritization [5], [7]. However, considering the impact of fault
severity and execution time of test cases, we will use other
measurement like APFDc [33] in the future.

F. Results and Analysis
In this section, we first present the distribution of APFD

results in Section III-F1 and then conduct statistics analysis
on the results in Section III-F2.

1) APFD Results: Figure 1 and Figure 2 present the box-
plots on the APFD results of the five test-case prioritization
approaches using test cases at the test-method level and test
cases at the test-class level, where the horizonal axis represents
the five test-case prioritization approaches and the vertical axis
represents the APFD results. For simplicity, we use “OP”
to refer to the optimal approach, “C-T” refer to the total
approach, “C-A” refer to the additional approach, “S-M” refer
to the proposed approach using the statistics-based model, and
“P-M” refer to the proposed approach using the probability-
based model. Furthermore, the caption under each sub-figure
in the form of “subject x1-x2 CLASS or METHOD” refers
to the fact that x1 and x2 are used as the early and latter
versions in the experiment. For example, the first sub-figure
has a caption “Jgrapht 5.0-5.1 CLASS”, which means that in
the corresponding experiment the early version is Jgrapht 5.0
and the latter version is Jgrapht 5.1, and the test cases used in
the experiment are at the test-class level.

From Figure 2, for the four versions of Jgrapht, the pro-
posed approach using either the statistics-based model or
the probability-based model, is always better than both the
total and additional approaches when prioritizing test cases
at the test-method level. Besides, the median of the proposed
approach is often higher, at least not worse, than the median
of the coverage-based approaches (i.e., the total and additional
approaches). Moreover, the APFD distribution of the proposed
approach is more centralized than the latter. Thus, for Jgrapht,
the proposed approach using either the statistics-based model
or the probability-based model is better than than the coverage-
based approaches when prioritizing test cases at the test-
method level. From Figure 2, when prioritizing test cases at
the test-class level, the proposed approach with the statistics-
based model outperforms the additional approach slightly in
most cases. Based on these observations, we guess that the
proposed approach may be more effective when prioritizing
test cases in the test-method level than in the test-class level.
Furthermore, for Jgrapht, the proposed approach with either
the statistics model or the probability-based model achieves

similar APFD results in most cases, but the former is better
in the remaining cases.

For Xmlsecurity, the additional approach seems slightly
better than the proposed approach, especially when prioritizing
test cases at the test-method level. However, based on the
median APFD results, the two approaches are similar. Consid-
ering the APFD distribution, the additional approach is more
centralized than the proposed approach. We suspect the reason
for this observation to be that Xmlsecurity has the smallest
number of mutant groups, as shown by Table I.

For Jodatime, the proposed approach with the statistics-
based model outperforms the total and additional approaches
very much when prioritizing test cases at the test-method
level, and the former slightly outperforms the latter when
prioritizing test cases at the test-class level. In particular, in
most cases, the proposed approach with the statistics-based
model is much better than the additional approach when
measuring their median and distribution of APFD results. In
the remaining cases, the median APFD results of the proposed
approach with the statistics-based model are at least the same
as the additional approach. In summary, the proposed approach
with the statistics-based model is better than the additional
approach in most cases when prioritizing test cases at the test-
class level. Moreover, when prioritizing test cases at the test-
method level, the superiority of the proposed approach with
the statistics-based approach over the additional approach is
more obvious. Furthermore, the proposed approach with the
statistics-based model is better than the proposed approach
with the probability-based model in most cases, when prior-
itizing test-cases at the test-method level. As Jodatime is the
largest projects used in the experimental study, the preceding
results may show that the proposed approach is competitive.

In Figure 1 and Figure 2, we used the first box in each
sub-figure to represent the APFD results of the optimal test-
case prioritization approach, which serves as the upper bound
of test-case prioritization. The APFD results of the other
compared approaches are usually far from those of the optimal
approach, although in some cases (e.g., prioritizing test cases
at the test-method level for Jodatime 1.5.2) the proposed
approach with the statistics-based model is very close to the
latter.

To learn the impact of code change in test-case prioritiza-
tion, we draw Figure 3 to represent the percentage of code
change in software evolution. In particular, the horizontal axis
represents the change in the form of “x1-x2” which represents
x1 is changed to x2, and the vertical axis represents the
percentage of code change based on the origin version. For
example, the column denoted as Jodatime 1.0-1.2 represents
the percentage of code change from Jodatime 1.0 to Jodatime
1.2. Through this figure, in software evolution, the percentage
of code change tends to increase, which is as expected.
Furthermore, from Figure 2 to Figure 3, the total and additional
approaches based statement coverage tend to become less
effective when more changes occur in software evolution. This
observation is as expected because the total and additional
approaches schedule the execution order of test cases based

51

OP C-T C-A S-M P-M

0.75

0.80

0.85

0.90

0.95

 JG 5.0-5.1 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.75

0.80

0.85

0.90

0.95

 JG 5.0-5.2 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.80

0.85

0.90

0.95

 JG 5.0-5.3 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.75

0.80

0.85

0.90

0.95

 JG 5.0-6.0 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 JT 1.0-1.2 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 JT 1.0-1.3 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 JT 1.0-1.4 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 JT 1.0-1.5 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.7

0.8

0.9

1.0

 JT 1.0-1.5.2 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.6

0.7

0.8

0.9

1.0

 JT 1.0-1.6 CLASS

A
P
F
D

OP C-T C-A S-M P-M

0.5

0.6

0.7

0.8

0.9

1.0

 XS 1.2.0-1.2.1 CLASS

A
P
F
D

Fig. 1. APFD Results of Prioritized Test Cases at the Test-Class Level

on their coverage of the early version and non-trivial change
from the early version to the latter version may definitely
hamper the effectiveness of these prioritization approaches. On
the contrary, our proposed approach, especially our proposed
approach with the statistics-based model, is steady, even if
non-trivial changes occur in software evolution. For example,
in the APFD result of Jodatime on test-method level, when
subject evolves from version 1.2 to version 1.6, the APFD
results of the proposed approach are more stable than those of
the coverage-based approaches. We suspect the reason for this
observation to be that our proposed approach relies mostly
on mutant killing information, which is more related to the
change between the early version and the latter version. As
our approach outperforms the total and additional approach in
terms of stableness, our approach seems to be promising.

2) Statistics Analysis: In order to investigate whether there
is significant difference between the compared approaches,
we performed a sign test [34] on the APFD results of these

approaches using the statistics software SPSS 15.08. The
results of the sign test are shown by Table II.

From this table, when prioritizing test-cases at the test-class
level, the proposed approach with the statistics-based model
is not significantly different from the proposed approach with
the probability-based model. However, when prioritizing test
cases at the test-method level, the proposed approach with the
statistics-based model significantly outperforms the proposed
approach with the probability-based model. Furthermore, con-
sidering the observation on Figure 1 and Figure 2, the proposed
approach with the statistics-based model is significantly better
than the proposed approach with the probability-based model
when prioritizing test cases at the test-method level, whereas
when prioritizing test cases at the test-class level, the former
outperforms the latter without significant difference.

When prioritizing test cases at the test-class level, the
proposed approach with the statistics-based model is not sig-
nificantly different from the total approach. When prioritizing

8http://www.spss.com

52

OP C-T C-A S-M P-M

0.9

1.0

 JG 5.0-5.1 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.9

1.0

 JG 5.0-5.2 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.93

0.94

0.95

0.96

0.97

0.98

0.99

 JG 5.0-5.3 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.75

0.80

0.85

0.90

0.95

1.00

 JG 5.0-6.0 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 JT 1.0-1.2 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 JT 1.0-1.3 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 JT 1.0-1.4 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 JT 1.0-1.5 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.6

0.7

0.8

0.9

1.0

1.1

 JT 1.0-1.5.2 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 JT 1.0-1.6 M ETHOD

A
P
F
D

OP C-T C-A S-M P-M

0.6

0.7

0.8

0.9

1.0

1.1

 XS 1.2.0-1.2.1 M ETHOD

A
P
F
D

Fig. 2. APFD Results of Prioritized Test Cases at the Test-Method Level

test cases at the test-method level, the proposed approach
with the statistics-based model is significantly better than
the total approach. Furthermore, considering the observation
on Figure 1 and Figure 2, the proposed approach with the
statistics-based model is significantly better than the total
approach when prioritizing test-cases at the test-method level,
and is mostly better than the total approach without significant
difference when prioritizing test cases at the test-class level.

When prioritizing test cases at the test-class level, the pro-
posed approach with the statistics-based model is significantly
worse than the additional approach. When prioritizing test-
cases at the test-method level, the proposed approach with the
statistics-based model is not significantly different from the
additional approach. Considering the observation on Figure 1
and Figure 2, the proposed approach with the statistics-based
model is significantly worse than the additional approach when
prioritizing test cases at the test-class level, but is mostly better
than the additional approach without significant difference
when prioritizing test cases at the test-method level.

TABLE II
SIGH TEST ON APFD RESULTS (α=0.05)

Comparison Granularity n+ n− p-value Result
cov total v.s. test-class 143 156 0.488 Not
mutation S-M test-method 43 264 0.000 Reject
cov total v.s. test-class 153 147 0.733 Not
mutation P-M test-method 44 265 0.000 Reject
cov add v.s. test-class 171 128 0.015 Reject
mutation S-M test-method 140 162 0.781 Not
cov add v.s. test-class 183 120 0.000 Reject
mutation P-M test-method 146 156 0.728 Not
mutation S-M v.s. test-class 96 119 0.134 Not
mutation P-M test-method 179 66 0.000 Reject

Although the proposed approach is less effective when
prioritizing test cases at the test-class level, the results may
not be representative because the total number of test cases at
the test-class level is small (usually smaller than 50), as shown
by Table I.

3) Conclusions: According to the preceding analysis, we
get the following conclusions for the two research questions.

• Our approach with the statistics-based model is signifi-

53

0

5

10

15

20

25

30
C
O
D
E
 C
H
A
N
G
E
(
%
)

JT1.0-1.2 JT1.0-1.3 JT1.0-1.4 JT1.0-1.5 JT1.0-1.5.2 JT1.0-1.6

0

5

10

15

20

25

30

C
O
D
E
 C
H
A
N
G
E
(
%
)

JG 5.0-5.1 JG 5.0-5.2 JG 5.0-5.3 JG5.0-6.0

0

5

10

15

20

25

30

C
o
d
e
 C
h
a
n
g
e
(
%
)

XS 1.2.0-1.2.1

Fig. 3. Percentage of Code Change

cantly better than our approach with the probability-based
model when prioritizing test cases at the test-method
level, but the former outperforms the latter without sig-
nificant difference when prioritizing test cases at the test-
class level.

• Our approach with the statistics-based model is mostly
better than the additional approach without significant
difference when prioritizing test cases at the test-method
level, but the former is significantly worse than the latter
when prioritizing test cases at the test-class level.

• Our approach with the statistics-based model is signifi-
cantly better than the total approach when prioritizing test
cases at the test-method level, but the former outperforms
the latter without significant difference when prioritizing
test cases at the test-class level.

IV. DISCUSSION

First, compared with the existing coverage-based ap-
proaches, the proposed approach tends to be effective but less
efficient. The cost of either the coverage-based approaches
or the proposed approaches includes two parts: information
collection and prioritization. Considering the cost on infor-
mation collection, the former approach is more efficient than
the propose approach due to the following reason. To collect
the coverage information required for the former approaches,
developers have to instrument the program under test and run
the instrumented program. The proposed approach does not
require this coverage information, but the information whether
each mutant is killed by each test case, which tends to be much
more costly than the coverage-based approaches. Considering
the cost on prioritization, the former approach is close to
the proposed approach. For example, when prioritizing the
test cases of Jodatime 1.0 for Jodatime-1.6, the prioritization
time of the total approach is 40,155ms, whereas the prioriti-
zation time of the proposed approach is 32,500ms. Generally
speaking, the proposed approach is less efficient. However, as
mutation faults may simulate real faults in software evolution
and thus the proposed mutation-based approach tends to be
promising in terms of effectiveness. Furthermore, according
to the experimental results, the proposed approach is still
effective when the latter version is much different from the
early version. That is, considering the efficiency issue, we may

use the mutant information for an early version for a series
of latter version when applying the proposed mutation-based
approach. Therefore, we plan to investigate the effectiveness
of the proposed approach when the two versions have much
difference.

Second, the proposed approach is represented in the gran-
ularity of statements, although it can be represented in other
granularities (e.g., methods). In particular, the proposed ap-
proach identifies the change between versions based on the
statement granularity and then generates mutants towards these
changing statements. Obviously, the proposed approach can
also be represented in other granularities like methods and
classes. It is less costly to identify the change in the coarse
granularity (e.g., methods or files) than the fine granularity
(e.g., statements), but mutant generation (which is the second
step of our approach) based on the coarse-granularity change
may have some shortcomings. First, mutant generation based
on the coarse-granularity (e.g., methods) may cause extra
efforts. Existing mutation tools produce mutants by performing
some mutation operators on some statements or expressions.
To generate mutants covering some method, programmers
have to first identify which statements belong to this method
and then generate mutants for this method (i.e., actually for the
statement in this method). Second, mutant generation based on
the coarse-granularity may produce imprecise data. Supposed
that statement s is changed from P0 to P1, programmers
identify the change by the method m because m contains s.
In mutant generation based on changing methods rather than
changing statements, programmers tend to use the mutants
whose mutation operation occur in m and thus some mutant
whose mutation operator occurs on the other statements of m
rather than s may be selected. That is, in mutant-generation
process, some mutants that are not related to the change
between P0 and P1 may be selected and thus may decrease
the effectiveness of test-case prioritization. Therefore, although
many other granularities exist when representing the proposed
approach, the granularity of statements is still a good choice.

Third, the proposed approach maps the change between two
versions on the source code of the early version due to the
following concern. As our approach is proposed in the testing
scenario of software evolution, the source code of the early
version and the latter versions is available. That is, we can

54

mark the changes between versions either on the early version
or the latter version. However, the mutants used to guide test-
case prioritization have to be generated and ran on the early
version for the sake of reducing the testing cost on the latter
version. To find the mutants related to the change, it is natural
to map the change between versions on the early version
rather than the latter version. However, we may investigate
the effectiveness of mutation-based test-case prioritization by
mapping the change on the latter version in the future.

Fourth, the statement added to P0 is mapped to the existing
statement in P0 that is closet. That is, currently the proposed
approach maps the changing statements just based on their
locations in the program. This strategy is not perfect and can
be improved. In our future, we will identify more statements
that the changing statements are control or data dependent on
and use the set of these statements as △P to improve the
proposed approach.

V. RELATED WORK

A. Test-Case Prioritization
The existing approaches on test-case prioritization can be

mainly classified two groups: general test-case prioritization
and version-specific test-case prioritization [17].

General test-case prioritization does not consider the differ-
ence between versions and prioritizes test cases based on only
the information of an early version. Most of the existing test-
case prioritization approaches [17], [7], [22], [23], [16] belong
to this category, which usually schedule the order of test cases
based on some structural coverage (e.g., statement coverage,
branch coverage, modified condition/decision coverage [22],
[16]) of test cases on the early version. For example, Jiang [35]
proposed an adaptive random approach, which selects test
cases based on the distance between selected test cases and
remaining unselected test cases. Zhang et al. [21] presented a
unified test-case prioritization approach, which combines the
benefits of both the total and the additional approach by a
unified model. Rothermel et al. [17] proposed to prioritize test
cases based on the number of mutants these test cases kill.
Similar to our work, this work schedules the execution order
of test cases based on mutants, but their mutants are generated
based on the early version, some of which are definitely not
related to the faults in software evolution. Furthermore, some
test-case prioritization approaches [36], [11], [14], [37] are
proposed by considering the constraints in software testing,
e.g., time limit. These general approaches prioritize test cases
only based on their information of an early version, and thus
may not be effective when there is unignorable difference
between the early version and the latter version.

Version-specific test-case prioritization considers the dif-
ference between versions and thus the prioritized results are
supposed to be effective for some latter version, not for
all the versions. For example, Wong et al. [19] proposed a
modification-based approach, which analyzes the source code
change and schedules test cases based on the “increasing cost
per additional coverage” [19]. Srivastava and Thiagarajan [13]
proposed to prioritize test cases based on their coverage on

the modified binary code. Furthermore, Korel et al. [12],
[20] proposed a series of model-based approaches, which
schedule the order of test cases based on the modification
on the system model and its execution information. Similar to
these approaches, our work is also a version-specific test-case
prioritization approach. However, the existing approaches rely
on the structural coverage on the difference between versions,
whereas our approach relies on the mutation faults simulating
real faults in software evolution.

B. Mutation Testing

Mutation testing [38], [39], was initially proposed to mea-
sure the adequacy of test cases by mutants, and thus many
previous researchers focus on investigating the generation of
mutants [40], [41]. However, as it is costly to run to execute
test suites on all the generated mutants [42], some researchers
began to investigate how to reduce the cost of mutation testing
mainly through two ways, mutant selection [42], [43], [44] and
time reduction [45], [46], [47]. Furthermore, as mutation faults
can be substitute for real faults, mutation testing is also be
applied to solve other problems in software testing, e.g., bug
fixing. Recently, Shi et al. [48] proposed to use the number of
mutants a test case kills as a complement criterion in test case
selection. Their work is similar to our work in this paper, but
our work targets at prioritizing test cases in software evolution.

VI. CONCLUSIONS

In this paper we propose a novel mutation-based test-
case prioritization approach for software evolution, which first
generates mutation faults whose mutation operators occur on
only the changed statements, and schedules the execution order
of test cases based on the descendent order of their fault-
detection capability, which is calculated by statistics-based
model and probability-based model. From the experimental
study, the proposed approach with the statistics-based model
outperforms the proposed approach with the probability-based
model and the total approach. Compared with the additional
approach, the proposed approach is competitive.

In the future, we will improve the proposed approach and
fully evaluate the proposed approach as follows. First, we
will improve the proposed approach by considering program
dependency in mutant selection and defining other models to
measure the fault-detection capability of test cases. Second,
we will evaluate the effectiveness of the proposed approach
by using the closet two versions as the early version and the
latter version. Third, we will evaluate the effectiveness of test-
case prioritization by considering other factors like time cost
and fault severity.

ACKNOWLEDGMENTS

This work is supported by the High-Tech Research and De-
velopment Program of China under Grant No.2013AA01A605,
the National Natural Science Foundation of China under Grant
Nos. 61421091, 61432001, and 61272157.

55

REFERENCES

[1] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of IEEE, pp. 1060–1076, 1980.

[2] Z. Zheng, S. Ma, W. Li, W. Wei, X. Jiang, Z. Zhang, and B. Guo,
“Dynamical characteristics of software trustworthiness and their evolu-
tionary complexity,” SCIENCE CHINA Information Sciences, vol. 52,
no. 8, pp. 1328–1334, 2009.

[3] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A
static approach to prioritizing JUnit test cases,” IEEE Transactions on
Software Engineering, vol. 38, no. 6, pp. 1258–1275, 2012.

[4] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test case
prioritization in a JUnit testing environment,” in Proceedings of the
International Symposium on Software Reliability Engineering, 2004, pp.
113–124.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing test cases
for regression testing,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2000, pp. 102–112.

[6] ——, “Incorporating varying test costs and fault severities into test
case prioritization,” in Proceedings of the International Conference on
Software Engineering, 2001, pp. 329–338.

[7] ——, “Test case prioritization: a family of empirical studies,” IEEE
Transactions on Software Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[8] S.-S. Hou, L. Zhang, T. Xie, and J. Sun, “Quota-constrained test-
case prioritization for regression testing of service-centric systems,” in
Proceedings of the International Conference on Software Maintenance,
2008, pp. 257–266.

[9] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test
case prioritization,” in Proceedings of Automated Software Engineering,
2009, pp. 257–266.

[10] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization
for modified condition/decision coverage,” in Proceedings of the Inter-
national Conference on Software Maintenance, 2001, pp. 92–101.

[11] J. M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Proceed-
ings of the International Conference on Software Engineering, 2002, pp.
119–129.

[12] B. Korel, L. Tahat, and M. Harman, “Test prioritization using system
models,” in Proceedings of the International Conference on Software
Maintenance, 2005, pp. 559–568.

[13] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in devel-
opment environment,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2002, pp. 97–106.

[14] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Time aware test suite prioritization,” in Proceedings of the International
Symposium on Software Testing and Analysis, 2006, pp. 1–11.

[15] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Prioritizing JUnit
test cases in absence of coverage information,” in Proceedings of the
International Conference on Software Maintenance, 2009, pp. 19–28.

[16] C. Fang, Z. Chen, and B. Xu, “Comparing logic coverage criteria on
test case prioritization,” Science China: Information Science, vol. 55,
no. 12, pp. 2826–2840, 2012.

[17] G. Rothermel, R. J. Untch, C. Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” IEEE Transactions on Software Engineer-
ing, vol. 27, no. 10, pp. 929–948, 2001.

[18] D. Hao, X. Zhao, and L. Zhang, “Adaptive test-case prioritization guided
by output inspection,” in Proceedings of the 37th Annual IEEE Computer
Software and Applications Conference, 2013, pp. 169–179.

[19] W. Wong, J. Horgan, S. London, and H. Agrawal, “A study of effective
regression testing in practice,” in Proceedings of the 8th International
Symposium on Software Reliability Engineering, 1997, pp. 230–238.

[20] B. Korel, G. Koutsogiannakis, and L. Tahat, “Application of system
models in regression test suite prioritization,” in Proceedings of the
International Conference on Software Maintenance, 2008, pp. 247–256.

[21] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,” in
Proceedings of the International Conference on Software Engineering,
2013, pp. 192–201.

[22] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage,” IEEE Transactions on Software
Engineering, vol. 29, no. 3, pp. 195–209, 2003.

[23] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: an empirical study,” in Proceedings of the International
Conference on Software Maintenance, 1999, pp. 179–188.

[24] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proceedings of the International
Conference on Software Engineering, 2005, pp. 402–411.

[25] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?”
in Proceedings of the Symposium on the Foundations of Software
Engineering, 2014.

[26] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified
test-case prioritization approach,” ACM Transactions on Software Engi-
neering and Methodology, vol. 24, no. 2, p. 10, 2014.

[27] A. J. Offutt, G. Rothermel, and C. Zpf, “An experimental evaluation of
selective mutation,” in Proceedings of the International Conference on
Software Engineering, 1993, pp. 100–107.

[28] J. Zhang, M. Zhu, D. Hao, and L. Zhang, “An empirical study on the
scalability of selective mutation testing,” in Proceedings of the 25th
International Symposium on Software Reliability Engineering, 2014, pp.
277–287.

[29] D. Schuler and A. Zeller, “Javalanche: efficient mutation testing for
Java,” in Proceedings of the ACM Symposium on Foundations of
Software Engineering, 2009, pp. 297–298.

[30] D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang, “Is this a bug or
an obsolete test?” in Proceedings of the 27th European Conference on
Object-Oriented Programming, 2013, pp. 602–628.

[31] J. H. Andrews, L. C. Briand, Y. Labiche, and A. Siami Namin, “Using
mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608–624,
2006.

[32] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Transactions
on Software Engineering, vol. 32, no. 9, pp. 733–752, 2006.

[33] A. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum, “Cost-
cognizant test case prioritization,” Department of Computer Science and
Engineering, University of Nebraska, Tech. Rep., 2006.

[34] J. Newmark, Statistics and Probability in Modern Life. Philadelphia:
Saunders College Pub, 1992.

[35] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test-
case prioritization,” in Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering, 2009, pp. 257–266.

[36] L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-case
prioritization using integer linear programming,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2009, pp.
213–224.

[37] H. Park, H. Ryu, and J. Baik, “Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness of
regression testing,” in Proceedings of the International Conference on
Secure Software Integration and Reliability Improvement, 2008, pp. 39–
46.

[38] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[39] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE TSE,
no. 4, pp. 279–290, 1977.

[40] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf,
“An experimental determination of sufficient mutant operators,” ACM
Transactions on Software Engineering and Methodology, vol. 5, no. 2,
pp. 99–118, 1996.

[41] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, “Toward the
determination of sufficient mutant operators for C,” Software Testing,
Verification, and Reliability, vol. 11, no. 2, pp. 113–136, 2001.

[42] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is operator-based
mutant selection superior to random mutant selection?” in Proceedings
of the International Conference on Software Engineering, 2010, pp. 435–
444.

[43] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-based
and random mutant selection: Better together,” in Proceedings of the
30th International Conference on Automated Software Engineering,
2013, pp. 92–102.

[44] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to overcome
the equivalent mutant problem and achieve tailored selective mutation
using co-evolution,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2004, pp. 1338–1349.

[45] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using
mutant schemata,” in Proceedings of the International Symposium on
Software Testing and Analysis, vol. 18, no. 3, 1993, pp. 139–148.

56

[46] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired
by test prioritization and reduction,” in Proceedings of the International
Symposium on Software Testing and Analysis, 2013, pp. 235–245.

[47] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “Regression mutation
testing,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2012, pp. 331–341.

[48] M. G. A. Z. D. M. August Shi, Alex Gyori, “Balancing trade-offs in test-
suite reduction,” in Proceedings of the 22nd ACM SIGSOFT Intenational
Symposium on Foundations of Software Engineering, 2014, pp. 246–256.

57

