
CHAPTER ONE

A Survey on Regression
Test-Case Prioritization
Yiling Lou*,†, Junjie Chen*,†, Lingming Zhang‡, Dan Hao*,†
*Key Laboratory of High Confidence Software Technologies, Peking University, Ministry of Education,
Beijing, China
†Institute of Software, EECS, Peking University, Beijing, China
‡Department of Computer Science, University of Texas at Dallas, Richardson, TX, United States

Contents

1. Introduction 2
2. Framework 5
3. Criterion 9

3.1 Structural Criterion 9
3.2 Model-Level Criterion 10
3.3 Fault-Related Criterion 10
3.4 Test Input-Based Criterion 11
3.5 Change Impact-Based Criterion 11
3.6 Other Criteria 12

4. Prioritization Algorithm 12
4.1 Greedy Algorithm 13
4.2 Search-Based Algorithm 14
4.3 Integrate-Linear-Programming-Based Algorithm 15
4.4 Information-Retrieval-Based Algorithm 15
4.5 Machine-Learning-Based Algorithm 16

5. Measurement 17
5.1 APFD 17
5.2 AFPDC 17
5.3 APXC 18
5.4 WGFD 19
5.5 HMFD 19
5.6 NAPFD and RAPFD 20

6. Constraint 20
6.1 Time Constraint 20
6.2 Fault Severity 22
6.3 Other Constraints 22

7. Application Scenario 23
7.1 General Test-Case Prioritization 24
7.2 Version-Specific Test-Case Prioritization 24

Advances in Computers, Volume 113 # 2019 Elsevier Inc.
ISSN 0065-2458 All rights reserved.
https://doi.org/10.1016/bs.adcom.2018.10.001

1

https://doi.org/10.1016/bs.adcom.2018.10.001


8. Empirical Study 25
8.1 Studies on Traditional Dynamic Prioritization 25
8.2 Comparison With Traditional Dynamic Techniques 26

9. Some Discussions 28
9.1 Existing Issues 29
9.2 Other Challenging Problems 31

10. Conclusion 33
Acknowledgments 33
References 33
About the Authors 45

Abstract

Regression testing is crucial for ensuring the quality of modern software systems, but
can be extremely costly in practice. Test-case prioritization has been proposed to
improve the effectiveness of regression testing by scheduling the execution order of
test cases to detect regression bugs faster. Since its first proposal, test-case prioritization
has been intensively studied in the literature. In this chapter, we perform an extensive
survey and analysis on existing test-case prioritization techniques, as well as pointing
out future directions for test-case prioritization. More specifically, we collect 191 papers
on test-case prioritization from 1997 to 2016 and conduct a detailed survey to system-
atically investigate these work from six aspects, i.e., algorithms, criteria, measurements,
constraints, empirical studies, and scenarios. For each of the six aspects, we discuss the
existing work and the trend during the evolution of test-case prioritization. Furthermore,
we discuss the current limitations/issues in test-case prioritization research, as well as
potential future directions on test-case prioritization. Our analyses provide the evidence
that test-case prioritization topic is attracting increasing interests, while the need for
practical test-case prioritization tools remains.

1. INTRODUCTION

Modern software systems keep evolving to refine software function-

ality and maintainability, as well as fixing software flaws. Regression testing

has been widely used during software evolution to ensure that software

changes do not bring new regression faults. Although crucial, regression

testing can be extremely costly [1–3]. In the research literature, it has been

reported to consume 80% of the testing cost [4]. Furthermore, modern

industry companies also suffer from regression testing cost due to the large

number of accumulated test cases during software evolution. For example,

Google engineers have witnessed a quadratic increase in their regression

testing time, and the number of tests executed each day within Google

already exceeds 100 million [5–7].

2 Yiling Lou et al.



To alleviate the cost of regression testing, a large body of research has

been dedicated to this area and many approaches have been proposed, such

as test-suite reduction, regression test selection, and test-case prioritization

[1]. Test-suite reduction (also denoted as test-suite minimization) [2, 8–16]
aims at reducing the number of test cases by excluding redundant test

cases. Regression test selection [17–28] aims to select and rerun only the test

cases that are affected by code changes. Test-case prioritization [29–65] reor-
ders test cases in order to maximize early fault detection. Among the three

areas, both test-suite reduction and regression test selection exclude some test

executions and may suffer from unsafe test execution (i.e., missing regression

faults). In contrast, test-case prioritization, the target area of this work, simply

reorders test executions and does not discard any test case. Therefore, test-

case prioritization does not have any fault-detection loss and has been

widely studied in research and applied in practice [5, 44, 66].

Test-case prioritization was first proposed in regression testing to deal

with the trade-off between what ideal regression testing should do and what

is affordable by scheduling the execution order of test cases [67]. However,

test-case prioritization is not the focus of that work. Later, Rothermel et al.

[29] presented a widely known industrial case to show the necessity of

test-case prioritization. Show in that work, the industry case has a product

with about 20,000 lines of code consuming 7 weeks on running the entire

test suite. Furthermore, that work also proposed various basic test-case

prioritization techniques, including the total and additional techniques,

which are usually taken as the control techniques in the evaluation of novel

test-case prioritization techniques, and still represent state-of-the-art test-

case prioritization according to three recent studies [68–70]. These two pieces
of work witness the beginning of test-case prioritization, and a large amount

of work has been proposed in the following two decades.

Briefly speaking, test-case prioritization aims to schedule the execution

order of test cases so as to satisfy some testing requirements. Formally, test-

case prioritization is defined as the following process: given any test suite T,

test-case prioritization is to find a permutation T 0 of T satisfying f(T 0) �
f(PT), where PT represents any permutation of T and f is a function defined

to map permutations of T to real numbers representing the prioritization

goal [32]. Since the ultimate goal of regression testing is to detect regression

faults, the test-case prioritization goal is usually specified as how fast the

regression faults can be detected. That is, test-case prioritization is usually

regarded as scheduling test cases to detect more faults earlier.

3A Survey on Regression Test-Case Prioritization



In regression testing, the test cases designed for an old version are usually

reused to test its latter versions to verify the code changes between versions.

That is, to reveal faults in the latter versions as early as possible, the reused test

cases should be executed in some specified order, which is the aim of test-

case prioritization. In other words, regression test-case prioritization (usually

abbreviated as RTP) targets at scheduling the execution order of test cases

designed for an old version so as to detect faults in its latter versions as early as

possible. Besides regression testing, test-case prioritization is also applied to

other testing scenarios where test cases are not designed for an old version

but for the current version, which is called initial testing [71]. That is, test-

case prioritization in initial testing (abbreviated as ITP in this chapter) targets

at scheduling the execution order of test cases designed for the current

version so as to detect faults in the current version as early as possible.

Due to the characteristics of ITP (e.g., does not rely on old version infor-

mation), its techniques are usually applicable to regression testing, whereas

the techniques of the latter may not be applicable for the former.

As the ultimate goal of test-case prioritization, detecting more faults

early is usually infeasible, because we can hardly know whether a test case

detects faults without running the test case. Many alternative goals like

structural coverage are used instead to guide the test-case prioritization

process [1, 29–33, 53, 72]. However, due to the inherent difference

between alternative goals and the ultimate goal, test-case prioritization

becomes more difficult. Furthermore, even taking these alternative goals,

test-case prioritization is also an NP-hard problem [73]. Therefore, test-

case prioritization suffers from both the effectiveness and the efficiency

issues.

To promote the long-term development of the test-case prioritization

topic, it is necessary to review and summarize it systematically. However,

the existing surveys either summarized this topic at a high level together

with other topics (e.g., test-case selection and test-suite reduction) [1], or just

reviewed test-case prioritization techniques before 2013 [74, 75]. During the

recent years, researchers have still been making obvious achievements on

this topic. For example, based on the papers collected for this survey (details

shown in Section 2), recent 3 years witness another upsurge in test-case

prioritization paper publications due to the popularity of continuous inte-

gration. Therefore, in this work, we present a new survey to systematically

review and summarize the test-case prioritization topic, and discuss new

trends and future work.

4 Yiling Lou et al.



2. FRAMEWORK

In this section, we analyze the papers considered in this survey and

present the analysis framework of this survey.

To conduct an extensive survey, it is necessary for us to collect a

sufficient number of test-case prioritization papers, which represent the

past and current status of test-case prioritization. To achieve this goal, we

collected representative papers through two steps. First, we used keywords

“test,” “prioritiz,” and “prioritis” to obtain an initial set of related

papers. Second, we manually checked the initial set of papers to keep the

most representative papers. Finally, we have a set of 191 papers on test-case

prioritization in total. To the best of our knowledge, this is the most com-

prehensive study on test-case prioritization in the literature.

Fig. 1 shows the number of analyzed papers on test-case prioritization

from 1997 to 2016. X-axis represents the year and Y-axis represents the

number of papers. From Fig. 1, we observe that the number of test-case pri-

oritization papers overall has a clear increasing trend since the first proposal of

test-case prioritization. The reason is that software systems grow larger and

larger during the last two decades (e.g., the Debian OS system [76] increased

from 55 million LoC to 419 million LoC between 2000 and 2012), and more

0

7.5

15

22.5

30

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Fig. 1 Number of papers on test-case prioritization from 1997 to 2016.

5A Survey on Regression Test-Case Prioritization



and more regression test cases are also accumulated during the process, thus

stimulating the development of efficient regression testing techniques includ-

ing test-case prioritization. In addition, we also see several upsurges during

the development of test-case prioritization in 2004–2005, 2008–2009, and
2014–2015. We looked into the phenomenon, and found the potential

reasons for that. During 2004–2005, the modern distributed version control

systems including Git [77] andMercurial [78] were being proposed. With the

advanced version control systems, more and more projects are hosted in

code repositories, bringing regression testing techniques to the attention of

the developers to test code revisions. During 2008–2009, the GitHub [79]

open-source project hosting service (the largest source-code hosting website

to date, with 20million users and 57million code repositories as of April 2017)

was initially released, and the hosted projects usually use regression testing to

validate code revisions. Another potential reason for the 2008–2009 resurge is
that the financial crisis increased the graduate student population. Finally, we

think that the resurge during 2014–2015 may be due to the recent develop-

ment of mature Continuous Integration (CI) services, such as Travis [80] and

Jenkins [81], which extensively use regression testing to provide fast quality

feedback.

Following prior work on test-case prioritization [82], we also classify the

existing test-case prioritization work according to the following aspects: algo-

rithms, criteria, measurements, scenarios, constraints, and empirical studies.

Fig. 2 shows the percentage of papers related to each aspect. Note that some

Algorithm Empirical study Criterion Constraint

3%
8%

55%

14%

19%

Measurement

Fig. 2 Ratio of papers of each category.

6 Yiling Lou et al.



papers cover multiple of those aspects, thus we categorize each paper based

on the main contribution of the work. Also note that this figure does not

show the percentage of papers on scenarios, because each test-case priori-

tization technique has to be evaluated on some specific scenario, such as

version-specific test-case prioritization or general test-case prioritization

(details shown in Section 7).

According to Fig. 2, more than half of papers focus on investigating criteria

for prioritization, followed by the papers proposing prioritization algorithms

and the papers on empirical studies. Accessing the fault-detection capability of

each test case is always a big challenge and the key for prioritization problem,

which is hard to obtain in practice. Fault-detection capability interacts with

many other capability such as coverage capability, mutant-killing capability.

Thus researchers always keep figuring out many different ways to represent

or simulate the fault-detection capability, and plenty of test criteria are newly

proposed each year. Since prioritization problem is an NP-hard problem,

the algorithm to find the optimal solution among the solution space also

matters. Many advanced algorithms in other field can also be adopted to solve

the test-case prioritization problem, thus there are also a large number of

papers investigating prioritization algorithms. Naturally, due to the large

number of test-case prioritization approaches, the comparison between these

approaches is also crucial for providing practical guidelines in regression

testing, leading to the large number of empirical studies.

To further analyze the trend of each category in test-case prioritization,

Fig. 3 further shows the number of papers belonging to each category per year.

Consistent with the ratio results of Fig. 2, most of the papers published each

year work on investing effective test criteria for test-case prioritization, indi-

cating the researchers’ effort in finding optimal test criteria to simulate the

fault-detection capabilities of tests a cross the last two decades. Besides, since

2009, prioritization algorithms and empirical studies also attracted increasing

attentions, indicating the switch of research interests in this area. We suspect

the reason to be as follows. In the initial stage of test-case prioritization (i.e., in

1997), therewere not manyworks in this area, and thus the researchers mainly

focused on the core problem of finding suitable surrogates (i.e., various test

criteria) for real fault-detection capabilities. Later on, when the test-case pri-

oritization area became more mature since 2009, researchers began to spend

more efforts on designing new prioritization algorithms. Meanwhile, due to

the large number of emerging papers on test-case prioritization, practitioners

often found it hard to find the optimal technique. Therefore, a large body of

research has also been dedicated to empirically evaluating and comparing

various test-case prioritization techniques.

7A Survey on Regression Test-Case Prioritization



0

3.5

7

10.5

14

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Algorithm Criterion Empirical study Measurement Constraint

Fig. 3 Number of papers of each category per year.



In this survey, we discuss the development and future directions

for each aspect of test-case prioritization in details. The remaining of this

chapter is organized as follows. Sections 3–8 review test-case prioritization

from the aforementioned six aspects, i.e., coverage criterion, prioritization

algorithm, measurement, constraint, scenario, and empirical study. Section 9

discusses the challenges, issues, and future work in test-case prioritization,

and finally Section 10 concludes this chapter.

3. CRITERION

Since it is hard to obtain the fault-detection capability of each test

case directly in practice, various criteria are proposed to assess test-case

fault-detection capability in prioritization. Besides test-case prioritization,

criteria are also widely used in test generation, selection, and minimization

[8, 17, 83].

Usually, large coverage criterion value means large probability of expos-

ing faults in a program, and thus maximizing criterion values can be an inter-

mediate goal of test-case prioritization. That is, criteria are actually used

to guide the prioritization process. For example, branch-coverage-based

prioritization [84] schedules the execution order of test cases based on the

branch coverage of these test cases. Due to the importance of criteria, many

of the existing work [34, 38, 60, 84–135] investigates their influence in the

evaluation.

3.1 Structural Criterion
Among all criteria, structural coverage is the mostly used one. In particular,

a structural coverage criterion is defined as the percentage of structural units

covered by a test case [136–142]. For example, the widely used structural

coverage criterion is statement coverage, which measures to what extent

a test case covers statements during test-case execution. Higher statement

coverage indicates larger fault-detection capability because without cover-

ing faulty statements a test case cannot reveal the corresponding faults.

Besides statement coverage [29], some other structural units like func-

tions/methods [30], blocks [67], and modified condition/decision [32] have

also been considered as a type of structural coverage criterion.

Interestingly, the experiment results in the work of Rothermel et al.

[29, 30] showed that in most cases, branch coverage outperformed statement

coverage using a set of C programs. But in more recent work of Lu et al. [68],

statement coverage usually performs best among these coverage criteria on a

9A Survey on Regression Test-Case Prioritization



set of real-world Java programs. One potential reason could be that

branches are less prevalent for the object-oriented Java programs than the

procedural C programs, making branch coverage ineffective for Java.

3.2 Model-Level Criterion
Though structural criteria are widely used, sometimes, structural coverage

can be unavailable for black-box or can be quite expensive to obtain for large

systems. System models can capture the different behaviors of a system and

there are some modeling languages proposed to model state-based software

systems. Recently, model-based techniques have been adopted in software

testing, such as test-case generation [143, 144], test-suite reduction [145],

and test-case prioritization [117, 146–150]
Korel et al. [147] presented a novel test-case prioritization based on state-

based models which execution information of the original and modified

models is used for retesting the modified software system. Furthermore,

Korel et al. [146] further proposed several model-based test-case prioritization

heuristics and empirically investigated the improvements of these heuristics

strategies. Xu and Ding [117] proposed an aspect-related test-case prioriti-

zation based on the incremental testing paradigm. Aspects are incremental

modifications to the base classes, thus the tests targeting the aspects would

be selected to execute first for they are more likely to detect the failures.

3.3 Fault-Related Criterion
As testing criteria are usually used to measure the fault-detection capability

of a test case or a test suite, some researchers presented some fault-detection

criteria directly because the preceding code-based coverage criteria cannot

sufficiently assess the capability of a test case or a test suite [151–156].
In particular, Rothermel et al. [84] introduced mutation score to repre-

sent each test case’s fault-exposing-potential, which regarded mutation-

killing-capability as fault-detection-capability. Elbaum et al. [157] used

the fault-index to estimate the fault proneness for each program unit, which

had been proved effective in previous work [158, 159]. The calculation

process of fault-index was as follows: (1), each function was associated

with some measurable attributes; (2), all attribute values were standardized

according to a group of baseline values; (3), the set would be reduced to a

smaller one by principal components analysis [160]; (4), the left values were

represented by a linear function which could generate one fault-index for

each function in the program.

10 Yiling Lou et al.



Ma and Zhao [125] proposed a new prioritization index called testing-

importance of module (TIM), which consisted of two factors: fault prone-

ness and importance of module, which acted as a new metric to measure the

severe fault proneness for module covered by test cases. Lou et al. [95] seeded

mutation on the changed code between versions to imitate the real faults

introduced during software evolution. Therefore, the capability of killing

these mutants can represent the capability of detecting real faults to some

extent.

3.4 Test Input-Based Criterion
Since the structural coverage, model information and mutation analysis

can be costly to obtain, recently researchers started to measure the fault-

detection capability of test cases based on the input data alone rather than

the execution information of test cases. That is, this type of criteria measures

the fault-detection capability by calculating the difference between test input

data, which are usually regarded as strings or vectors.

In particular, Ledru [161] proposed a prioritization approach which

compared the string distance between test cases with a greedy algorithm.

Chen et al. [162] proposed a test-vector-based approach to prioritizing test

programs for compilers by analyzing the extracted features of test programs

to solve the efficiency problem of compiler testing [163]. Recently, Chen

et al. [164] proposed to predict the bug-revealing probabilities per unit time

of test programs for compilers via machine learning, and schedule the exe-

cution order of these test programs based on the descending order of these

bug-revealing probabilities per unit time. Chen et al. [89] transformed test

cases into a form of vectors for clustering. Jiang et al. [165] proposed a novel

family of input-based prioritization techniques, which calculates the differ-

ence between test cases by three types of distance functions.

3.5 Change Impact-Based Criterion
Change information are also used very frequently in prioritization criteria

[166, 167]. For example, the modified condition mentioned in structural

unit level criteria also used the change information during program evolu-

tion. However, there is a category of criteria analyzing the change code in

a more specific way, so this section introduce these criteria individually.

Haraty et al. [168] proposed a clustering prioritization approach based

on code change relevance, which mainly prioritized clusters of test cases

based on their relevance to code changes. Alves et al. [169] proposed a

11A Survey on Regression Test-Case Prioritization



refactoring-based approach to prioritizing tests for detecting refactoring

bugs. The approach first collected the change edits between two versions

of a program and then analyzed the change impact based on a number of

refactoring fault models to determine the execution order of test cases.

Panda et al. [170] presented a static analysis approach to prioritizing test

cases based on affected component coupling of object-oriented programs.

It first constructed affected slice graph whose nodes had different fault-

proneness and then scheduled execution order based on the nodes covered

by each test case.

3.6 Other Criteria
Besides, some studies are hard to categorize into aforementioned categories.

3.6.1 Risk
Hettiarachchi et al. [171] proposed a risk-based test case prioritization

approach, which applied a fuzzy expert system to estimate the risks systemat-

ically for requirements and prioritized test cases based on the risks they

involved.

3.6.2 Similarity
Fang et al. [100] proposed a similarity-based test case prioritization which

transformed test case’s execution profile into an ordered sequence of

program entities and compared distance of the sequence of each test case.

3.6.3 Service History
Srikanth et al. [172] prioritized building acceptance test cases based on the

service history data from several months, i.e., service interaction and histor-

ically failing services.

3.6.4 Requirement
Arafeen et al. [173] proposed a test-case prioritization approach which clus-

tered test cases according to the requirement similarities in order to utilize

requirements information.

4. PRIORITIZATION ALGORITHM

In this section, we introduce the algorithms used to guide test-case

prioritization. Specifically, we classify the existing prioritization algo-

rithms into several groups, i.e., greedy algorithm, search-based algorithm,

12 Yiling Lou et al.



information-retrieval-based algorithm, integrate-linear-programming-based

algorithm, machine-learning-based algorithm. Moreover, when introducing

the prioritization algorithms, we take the statement coverage criterion as

the representative, although many following algorithms can be applied to

various criteria, e.g., method coverage, branch coverage, and even advanced

data-flow coverage criteria [84, 85].

4.1 Greedy Algorithm
Greedy algorithms are widely used to address the test-case prioritization

problem, which focus on always selecting the current “best” test case during

test-case prioritization. The greedy algorithms can be classified into two

groups. The first group aims to select tests covering more statements, whereas

the second group aims to select tests that is farthest from the selected tests.

Regarding to the first group, the most popular greedy algorithms are the

total and additional algorithms. In particular, the total algorithm prioritizes

test cases based on the descendent order of statements covered by each test

case, whereas the additional algorithm prioritizes test cases based on the

descendent order of statements that are covered by each unselected test case

but uncovered by the existing selected test cases. As the total and additional

algorithms can have best performance in different cases, Zhang et al. [174,

175] proposed a unified prioritization model, which uses a probabilistic

model to bridge the gap between the total and additional algorithms so that

the total and additional algorithms can be regarded as its two extreme

instances. Moreover, this model yields a spectrum of specific prioritization

algorithms between the total and additional algorithms. Besides, Li et al. [72]

proposed the 2-optimal strategy which was based on K-optimal algorithm

[176] where K ¼ 2. Different from approaches mentioned above, the

2-optimal approach tries to select “next two best” test cases according to

coverage ability of each pair of test cases.

Regarding to the second group, the typical greedy algorithm is adaptive

random test-case prioritization [177], which is proposed based on adaptive

random testing [178, 179]. In particular, it first iteratively generates a

candidate set of test cases and selects one test case based on a selecting algo-

rithm. The selecting algorithm aims to select a test case that is the farthest

from the already selected test cases based on a distance definition function

f1 and a farthest selection function f2. In particular, this work proposed

to use Jaccard distance to define f1 and defined three types of selection

function f2.

13A Survey on Regression Test-Case Prioritization



The greedy algorithms focus on searching the local optimal solution to

prioritization, and thus their prioritization results may not be the optimal

solution.

4.2 Search-Based Algorithm
Since the prioritization problem is an NP-hard problem, greedy algorithms

can not always obtain the optimal solution within the solution space. There-

fore, some search-based algorithms are applied to solve the prioritization

problem, aiming to achieve better prioritization results with acceptable

computation cost.

In particular, Li et al. [72] applied meta-heuristic search-based algorithms

to test-case prioritization. That is, they applied steepest ascent hill-climbing

and genetic algorithms. In particular, steepest ascent hill climbing is a local

search algorithm, where each test permutation is regarded as a state. This

algorithm iteratively switches to best state among all neighbors of the

current state. The genetic algorithm [72] is based on the processes of natural

selection according to Darwinian theory of biological evolution. In this

algorithm, each test sequence is encoded in an N-sized array representing

an instance of chromosome. In the initial step, a group of test sequences

is generated randomly as the initial individuals. Iteratively, a new genera-

tion is generated by combining selected individuals guided by the fitness

function. The whole search process will be terminated until certain require-

ment is satisfied.

Besides the traditional single-objective test-case prioritization, there is

another form of test-case prioritization problem, called multiobjective

test-case prioritization. Given a test suite T, the set of T 0s permutations

PT, and a vector ofM objective functions, fi(i¼ 1, 2,…,M), multiobjective

test-case prioritization aims at finding T 0 �PT such that T 0 is a Pareto-

optimal permutation set with respect to the objective functions, fi(i ¼ 1,

2,…,M). The objective functions usually are some important prioritization

criteria. Pareto-optimal means that strategy A improves strategy B without

making things worse.

Epitropakis et al. [180] investigated multiobjective test-case prioritiza-

tion through three objectives: average percentage of coverage, average per-

centage of coverage of changed code, and average percentage of past fault

coverage and evaluated the fault-detection capabilities in the experiment.

Solvingmultiobjective problem in software engineering bymultiobjective

evolutionary algorithms usually faces with the challenge of scalability problem

14 Yiling Lou et al.



due to the population size and iterations. Therefore, Li et al. [181] proposed a

novel GPU-based parallel fitness evaluation algorithm for test-case prioritiza-

tion, which implemented the fitness evaluation and crossover computation

by graphic processing units on GPU.

Overall, the characteristics of search-based prioritization algorithms lie in

searching for the optimal solution guided by the predefined fitness function

within the searching space.

4.3 Integrate-Linear-Programming-Based Algorithm
Integrated linear programming (abbreviated as ILP) is a mathematical

optimization or feasibility program where all the variables, objective func-

tions, and constraints are linear, which is an NP-hard problem. Recently,

researchers applied ILP to describe the problem of test-case prioritization

and thus the solutions to the ILP formula are the prioritization results.

That is, the problem of test-case prioritization is transformed into formula

construction and solving process.

In particular, Zhang et al. [82] firstly applied ILP to solve time-aware

test-case prioritization. In particular, this approach first selects a set of test cases

by solving the ILP formula describing time-aware test-case prioritization, and

then prioritizes selected test cases through some greedy strategies. Recently,

to investigate the bound of coverage-based test-case prioritization, Hao

et al. [182] used ILP to represent coverage-based test-case prioritization

so as to learn the performance of optimal coverage-based test-case prioriti-

zation techniques.

4.4 Information-Retrieval-Based Algorithm
Information retrieval (abbreviated as IR) techniques [183] aim to obtain

information needed from a collection of information resources, which have

been fully studied in the last 40 years and applied to various domains, includ-

ing software engineering. The main idea of information-retrieval-based

algorithm is as follows: (1) it uses test case information such as execution

information or source code of each test case to construct the corresponding

document collection for each test case, namely, each document represents

one test case; (2) it uses source code information (usually the changed part

of source code) serving as the input query of IR, and IR will return a ranked

list of the documents constructed in the first step, which in fact is a ranked

list of test cases by the relevance to the input information.

15A Survey on Regression Test-Case Prioritization



In particular, Nguyen et al. [184] proposed an IR-based approach to

prioritizing test cases for web services, which used the identifier documents

extracted from the execution trace to represent each test case and used the

web service change description as the input query of IR.

Kwon et al. [185] proposed an IR-based approach which adapted term

frequency (TF) and inverse document frequency (IDF) to prioritize test

cases. This approach considers not only code coverage information but also

how many times a coverage element is executed by a test case (TF) and

source code elements are tested by few test cases (IDF). Linear regression

model is applied to weigh the value of the information.

Later on, Saha et al. [186] proposed an IR-based approach to prioritize

JUnit test cases. Their approach used the test source code to construct

the relative document for each test case and used the changed code of the

program under test as the input query to get a ranked list of test cases by their

relevance to program changes.

4.5 Machine-Learning-Based Algorithm
Machine learning is a data-analysis technique that builds a model from

sample input to make prediction for new data. Typically, machine learning

techniques consist of supervised learning and unsupervised learning (called

clustering as well).

Tonella et al. [133] presented a machine-learning-based test-case prior-

itization approach which incorporated user knowledge by case-based rank-

ing model. This approach used the indicator of priority, which was defined

by user cases, and test case information such as coverage and fault proneness

metrics as features to train a model to predict the priority of test cases. Chen

et al. [162] proposed a test-vector based approach to prioritizing test pro-

grams for compilers, which did not need to collect coverage information

but only analyze necessary features from each test program itself to prioritize

test programs for compilers. More recently, Chen et al. [164] developed

LET (short for learning to test), which learned from existing test programs

to accelerate future test execution. LET first designed and extracted a lot

of features from the source code of test programs (e.g., address features

and pointer comparison features). Then, LET trained a capability model

to predict the bug-revealing probability of each new test program, and a time

model to predict the execution time of each new test program, based on these

features. Finally, LET prioritized new test programs as the descending order

of their bug-revealing probabilities in unit time.

16 Yiling Lou et al.



5. MEASUREMENT

To access the performance of test-case prioritization techniques, it is

necessary to propose a measurement for test-case prioritization, including

efficiency and effectiveness.

With regard to the efficiency of test-case prioritization, researchers

usually use the complexity analysis of a prioritization algorithm to measure

its cost. For example, Elbaum et al. [157] analyzed that the complexity of the

statement-coverage-based total prioritization technique is O(mn + mlogm)

and the complexity of the statement-coverage-based additional prioritiza-

tion technique is O(m2n), where m represents the number of test cases

and n represents the number of statements in a program.

With regard to the effectiveness of test-case prioritization, most of the

existing work uses the average of percentage of faults detected (abbreviated

as APFD). Besides, as this measurement suffers from the widely known

problems, e.g., ignoring the impact of testing time and fault severities, many

researchers further improved this measurement accordingly. In the follow-

ing, we briefly introduce the measurements used in test-case prioritization.

5.1 APFD
Rothermel et al. [29] proposed the first measurement for assessing the

effectiveness of test-case prioritization, which is called weighted average

of the percentage of faults detected (APFD). APFD measures how rapidly a

prioritized test suite detects faults. Higher APFD values mean faster fault-

detection rates. Formula (1) shows how to calculate APFD values for a

test-case prioritization technique. In this formula, TFj refers to the first test

case in prioritized test suite that detects the jth fault, n refers to the number of

test cases, and m refers to the number of faults detected by the test suite.

APFD has already become one of the most widely used measurements for

assessing the performance of test-case prioritization in the literature [71].

APFD¼ 1�
Xm

j¼1
TFj

nm
+

1

2n
(1)

5.2 AFPDC

Actually, APFD does not reflect the practical performance of test-case

prioritization, since it ignores the influence of test execution costs and fault

17A Survey on Regression Test-Case Prioritization



severity. Therefore, Elbaum et al. [33] further proposed another measure-

ment to measure the practical performance of test-case prioritization by con-

sidering the influence of the two factors, which is called cost-cognizant

weighted average percentage of faults detected (APFDC). APFDC is actually

adapted from APFD, which is defined as Formula (2). In this formula, fi
refers to the severity of the ith fault detected by the prioritized test suite,

and tj refers to the test cost of the jth test case in the prioritized test suite.

APFDC ¼

Xm
j¼1

fi *
Xn
i¼TFj

ti�1

2 *
tTFj

0
@

1
A

0
@

1
A

Xn
j¼1

tj *
Xm
j¼1

fj

(2)

In practice, it tends to be quite difficult to know the severity of each fault

in advance. Therefore, a simplified APFDC is usually used to measure the

performance of test-case prioritization by treating all faults as sharing the

same severity [180]. The simplified APFDC is shown as Formula (3).

APFDCðsimplifiedÞ¼

Xm
j¼1

Xn
i¼TFj

ti�1

2 *
tTFj

0
@

1
A

Xn
j¼1

tj *m

(3)

5.3 APXC
In order to measure the performance of test-case prioritization before test-

case execution, researchers [72, 182] also proposed to leverage the average

percentage of some structural coverage (abbreviated as APXC) as a measure-

ment. APXC has the similar formula with APFD. For APXC, TFj in

Formula (1) refers to the first test case in prioritized test suite that covers

structural units (e.g., statement and block) j, and m refers to the total number

of structural units covered by the test suite. In particular, higher APXC

values mean faster coverage rates.

According to the general definition of APXC, we may have APBC to

measure the rate at which a prioritized test suite covers the blocks, APSC

to measure the rate at which a prioritized test suite covers the statements.

Such measurements are defined based on structural units, which are not

18 Yiling Lou et al.



the ultimate goal. Therefore, they are actually widely used as an intermediate

goal (e.g., fitness function) during search-based test-case prioritization to

guide test-case prioritization, rather than as a measurement for the perfor-

mance of test-case prioritization.

5.4 WGFD
Higher APFD values mean faster fault detection. However, the problem is

how to define “fastness.” In different testing scenarios, “fastness” tends to have

different definitions. Therefore, Lv et al. [187] proposed a new generalized

measurement from a control theory viewpoint, which is called the weighted

gain of faults detected (WGFD). The basic idea is to weight and sum fault-

detection rates of different test cases so as to define “fastness” in different test-

ing scenarios. That is, since the number of test cases detected at different time

should have different impact on measuring the performance (fastness) of a

prioritization technique, different weights should be assigned to the fault-

detection rates of different test cases. In particular, WGFD is defined in

Formula (4), where n refers to the number of test cases in the test suite, r(i)

refers to the fault-detection rate of test case i, and w(i) refers to the assigned

weight to the fault-detection rate of test case i.

WGFD¼
Xn
i¼1

wðiÞ * rðiÞ (4)

5.5 HMFD
According Formula (1), the APFD measure increases as the size of the test

suite increases. In other words, APFD is affected by the size of a given test

suite. To relieve this issue of APFD, Zhai et al. [99] proposed a new mea-

surement to measure how quickly a prioritized test suite can detect faults,

which is independent from the size of a given test suite. The new measure-

ment is called the harmonic mean of the rate of fault detection (HMFD). In

particular, HMFD is defined as Formula (5), where TFj refers to the first test

case in the prioritized test suite that detects the ith fault, and m is the number

of faults detected by the test suite. Note that low HMFD values mean better

performance of test-case prioritization.

HMFD¼ m
Xm

j¼1

1

TFj

(5)

19A Survey on Regression Test-Case Prioritization



5.6 NAPFD and RAPFD
In practice, there may be various constraints in test-case prioritization. Due

to the existence of practical constraints in test-case prioritization, not all of

the faults can be detected by a given test suite. Moreover, we may not exe-

cute the same number of test cases. Walcott et al. [188] proposed to assign a

penalty to the missing faults so as to solve the first problem. In addition, Qu

et al. [189] proposed normalized APFD (abbreviated as NAPFD) to measure

the performance of test-case prioritization in order to solve the two prob-

lems. In particular, NAPFD is defined as Formula (6), where p refers to the

value that is calculated by dividing the number of faults detected by the

prioritized test suite by the number of faults detected by the full test suite.

To further improve these measurements, Wang and Chen [190] proposed

the relative average percent of faults detected (RAPFD) by considering

the given testing resource constraint, which determines how many test cases

could be run. Furthermore, Do and Rothermel [191, 192] further proposed

many improved cost–benefit models for assessing regression testing method-

ologies (including test-case prioritization). In particular, these models incor-

porate context factors (e.g., the costs of some essential testing activities

such as test setup and obsolete test identification) and lifecycle factors (e.g.,

the costs and benefits for techniques across system lifetimes).

NAPFD¼ p�

Xm
j¼1

TFj

nm
+

p

2n

(6)

6. CONSTRAINT

As a practical problem, test-case prioritization tends to suffer from

various practical constraints. Therefore, many studies investigated how to pri-

oritize test caseswhen considering practical constraints [88, 121, 127, 188, 193].

6.1 Time Constraint
The mostly studied constraint in test-case prioritization is the time constraint,

also called time budget [188]. Ideally, all the test cases in the prioritized test

suite are expected to be executed during the process of software testing, so

as to avoid fault-detection capability loss of the test suite. However, under

the practical environment of software testing, the allowed testing time may

not be quite sufficient, which causes that the prioritized test suite may not

20 Yiling Lou et al.



be totally executed. For example, in some companies, software testing is just

allowed in night [188, 194], and thus if the time of executing the whole test

suite is more than one night, some prioritized test cases will not be executed.

Besides, new software development processes, e.g., extreme programming,

also advocate a short testing cycle. Therefore, on this occasion, the time

constraint is quite necessary to be considered when prioritizing test cases.

To make test-case prioritization more effective given the allowed testing

time, various approaches have been proposed to select only a subset of test

cases and schedule their execution order rather than all the test cases.Walcott

et al. [188] proposed time-aware test-case prioritization. More specifically,

they used a genetic algorithm to prioritize test cases in order to achieve two

goals. The first goal is to ensure that the prioritized test cases can be executed

within the given testing time. The second goal is to make the prioritized test

cases achieve the largest fault-detection capability. To achieve the same

goals, Alspaugh et al. [195] proposed to use 0/1 knapsack solvers to prioritize

test cases, including greedy, dynamic programming, and the core algorithms.

Zhang et al. [82] identified that time-aware test-case prioritization implied

to select a subset of test cases from the test suite for prioritization. Therefore,

they proposed to combine test-case selection and test-case prioritization to

achieve the goals of time-aware test-case prioritization. More specifically,

they first used integer linear programming [196] to select a subset of test cases

that can achieve the maximum test coverage within the time budget, and

then applied traditional test-case prioritization techniques to schedule the

execution order of the selected test cases. Note that, in this way, the tradi-

tional total technique and the traditional additional technique are both

adapted to be time-aware total technique and time-aware additional tech-

nique. Later on, Suri et al. [197] also applied ant colony optimization to

prioritize test cases in the time constraint environment.

Based on the existing research [188, 191], considering the time constraint

in test-case prioritization may influence the costs and benefits of test-case

prioritization techniques. Do et al. [198] conducted a series of experiments

to investigate such influence. Their experimental results demonstrated that

the time constraint indeed has a significant influence on the cost-effectiveness

of test-case prioritization techniques. Furthermore,You et al. [199] conducted

an empirical study to investigate whether the time cost of each test case influ-

ences the effectiveness of time-aware test-case prioritization. Their experi-

mental results showed that the effectiveness of the prioritization techniques

considering the time cost of each test case has no significant difference with

that of the prioritization techniques omitting the time cost of each test case.

21A Survey on Regression Test-Case Prioritization



That is, it tends to be not worth considering the time cost of each test case

for time-aware test-case prioritization. In addition, Marijan [38] proposed a

framework for optimal test-case prioritization in the time constraint environ-

ment by integrating three different perspectives, including business perspec-

tive, performance perspective, and test design perspective. More specifically,

from a business perspective, failure impact is regarded as an important factor

influencing test effectiveness; from a performance perspective, test execution

time is regarded as an obvious factor of test effectiveness; from a technical

perspective, both failure frequency and cross-functionality are regarded as

important factors of test effectiveness. In particular, failure frequency refers

to a measure of how often test cases detect failures, and cross-functionality

refers to a measure of how much the functionality of the system under test

is covered by a test case.

6.2 Fault Severity
Another widely studied constraint in test-case prioritization is fault severity.

The fault severity reflects the costs or resources required if a fault persists

in and influences the users/organization/developers. The existing test-case

prioritization is based on the assumption that the severity of all the faults are

considered equally. However, the assumption may not hold in practice, and

thus the fault severity is also a practical constraint for test-case prioritization.

Elbaum et al. [33] firstly considered the fault severity constraint

when measuring the effectiveness of test-case prioritization techniques. Park

et al. [200] proposed to prioritize test cases by considering fault severity. In

particular, they estimate the current fault severity using history information.

Actually, their approach has an assumption, i.e., test costs and fault severities

are not largely changed from one version to a later version. Malishevsky et al.

[201] adapted traditional test-case prioritization (e.g., the total technique and

the additional technique) to cost-cognizant test-case prioritization by consid-

ering the fault severity constraint and the time cost of each test case. Huang

et al. [108] also proposed a history-based cost-cognizant test-case prioritiza-

tion. More specifically, their approach collected the historical records from

the latest regression testing and then used a genetic algorithm to schedule

the most effective execution order of test cases.

6.3 Other Constraints
Besides, resource (e.g., hardware resource) is also a constraint in test-case

prioritization. Kim and Porter [193] proposed a test-case prioritization based

22 Yiling Lou et al.



on history information by considering the resource constraint and time con-

straint. That is, they assigned a selection probability for each test case based

on history information, and selected a test case to run based on these prob-

abilities until testing time is exhausted. More specifically, their utilized

history information contains the execution history of each test case, the

corresponding fault detection, and/or the covered program entities. Wang

et al. [88] proposed a resource-aware multiobjective optimization solution

to produce an optimal execution order of test cases by considering the

resource constraint and the time constraint. In the multiobjective optimiza-

tion solution, they defined a fitness function based on four cost-effectiveness

measures, including (1) minimizing the time for executing prioritized test

cases and allocating relevant test resources; (2) maximizing the number of

test cases to be executed; (3) maximizing the usage of available test resources;

and (4) maximizing fault-detection achieved by prioritized test cases.

Furthermore, there are some other constraints, e.g., testing requirement

priorities and the request quotas of web service. To prioritize test cases by

considering testing requirement priorities, Zhang et al. [127] proposed to

utilize test history information to evaluate the priorities of test cases so as

to prioritize test cases based on them. Here various types of code elements

can be regarded as testing requirements, e.g., statements, basic blocks,

methods; or features and attributions of system; or faults in system. About

the constraint of the request quotas of web service (e.g., the upper limit

of the number of requests that a user can send to a Web Service during a

certain time range), Hou et al. [121] proposed quota-constrained test-case

prioritization for service-centric systems by maximize testing requirement

coverage.More specifically, they first divided the testing time into time slots,

and then selected and prioritized test cases for each slot by using integer

linear programming.

7. APPLICATION SCENARIO

Test-case prioritization aims to speed up fault detection for the new

software version during software evolution. Balancing the overhead and

effectiveness, two different application scenarios have been explored—(1)

general test-case prioritization and (2) version-specific test-case prioritization.

General test-case prioritization techniques [68–70, 84, 202] usually com-

pute the optimal test order once for one revision, and then reuse that test

order for a number of subsequent revisions. On the contrary, version-

specific test-case prioritization techniques [66, 95, 146, 186] compute the

23A Survey on Regression Test-Case Prioritization



optimal test order right before each revision in order to achieve effective

test-case prioritization. While version-specific test-case prioritization may

achieve more precise results, it may incur higher overhead due to the

frequent test-case prioritization runs. In this section, we discuss the details

for such two application scenarios.

7.1 General Test-Case Prioritization
Given a program P and its corresponding test suite T, general test-case

prioritization [68–70, 84, 202] computes test execution order valid for a

number of subsequent modified revisions of P. Therefore, they are usually

based on general program/test information shared by various revisions,

e.g., the set of program elements covered by each test.

For example, if test t1 covers more program elements than t2 on one

program revision, the same may still hold for later program revisions.

Therefore, traditional test-case prioritization techniques based on coverage

information, e.g., the total/additional [84, 157], adaptive-random-testing-based

[177], and search-based techniques [72], can all be directly utilized for general

test-case prioritization.

When prioritizing using coverage information obtained from historical

revisions, software changes and test additions could make test-case prioriti-

zation techniques ineffective since coverage information can be obsolete

(due to software changes) or absent (for newly added tests) during the

software evolution. To study the impacts of software changes and test addi-

tions for general test-case prioritization, Lu et al. [68] recently performed

a study on real-world evolving GitHub projects. The study results demon-

strate that software changes do not impact general test-case prioritization

much, whereas test additions, which incur tests without coverage informa-

tion, may significantly impact the effectiveness of general test-case prioriti-

zation. The study provides practical guidelines for determining the intervals

of applying general test-case prioritization—general test-case prioritization

should be reapplied whenever there are nontrivial number of added tests.

7.2 Version-Specific Test-Case Prioritization
Given a program P and its corresponding test suite T, version-specific

test-case prioritization [66, 95, 146, 186] computes optimal test execution

orderings specifically for P 0, the next revision of P. Version-specific test-case
prioritization is performed after changes have been made to P and prior to

regression testing of P 0. The prioritized test suite may be more effective for

24 Yiling Lou et al.



testing P 0 than that computed by general test-case prioritization, but may

be inferior on average on a succession of subsequent releases of P.

In the literature, researchers have also applied traditional coverage-based

test-case prioritization techniques to the version-specific scenario. Further-

more, since regression faults are mainly due to software changes, researchers

have also proposed various version-specific test-case prioritization tech-

niques [66, 95, 146, 186] based on the detailed change information during

software revision for more effective test-case prioritization. For example,

Srivastava and Thiagarajan [66] analyzed the binary-level basic block changes

to execute tests covering more changes earlier for faster regression fault detec-

tion. Korel et al. [146] analyzed the systemmodels and computed model-level

modifications for precise version-specific test-case prioritization. Lou et al.

[95] presented a mutation-based version-specific test-case prioritization tech-

nique, which simulates faults occurred in software evolution by mutants on

the change and prioritizes test cases based on their killing information on these

simulation faults. Recently, Saha et al. [186] transformed the version-specific

test-case prioritization problem into an information retrieval problem by

treating source-code level changes as queries and test-case source code as

documents. Then, the tests with more textual similarities with software

changes are executed earlier to detect regression bugs faster.

8. EMPIRICAL STUDY

Due to the large number of existing test-case prioritization techniques,

it can be hard to make the right/optimal choices in practice. Therefore,

researchers have also performed various studies on test-case prioritization

techniques to provide practical guidelines for test-case prioritization.

8.1 Studies on Traditional Dynamic Prioritization
Due to the dominant position of traditional dynamic test-case prioritization

techniques, the vast majority of studies explore various factors around these

techniques.

Rothermel et al. [84] empirically compared various dynamic test-case

prioritization techniques (including coverage-based and mutation-based tech-

niques) against unordered or randomized test suites on a suite of C programs.

Later on, Elbaum et al. [33] further studied the impacts of fault severities

and test execution time on test-case prioritization. Elbaum et al. [157] also

investigated the impacts of program versions, program types, and different cov-

erage granularities on test-case prioritization on C programs. Do et al. [203]

25A Survey on Regression Test-Case Prioritization



performed the first study of test-case prioritization on JUnit tests for Java

programs.The study demonstrated the effectiveness of dynamic test-case prior-

itization on Java programs besides C programs, and also revealed divergent

behaviors of test-case prioritization on Java andCprograms.Do et al. [198] also

investigated the effect of time constraints on the cost-effectiveness of test-case

prioritization, as well as demonstrating the validity of using mutation faults

for test-case prioritization experiments [156, 204]. Recently, Lu et al. [68]

investigated the impacts of real-world software evolution on test-case prioriti-

zation and found that code changes do not impact the effectiveness of test-case

prioritizationmuchwhile test additions can significantly lower the effectiveness

of traditional dynamic test-case prioritization.

In terms of effectiveness, various studies have confirmed that the

traditional additional [84] and search-based [72] test-case prioritization tech-

niques represent the state of the art [68, 72, 174, 177].

8.2 Comparison With Traditional Dynamic Techniques
Besides the traditional dynamic test-case prioritization techniques, researchers

have also proposed various other test-case prioritization techniques. In the

next, we present two recent but important studies comparing traditional

dynamic test-case prioritization with other static or black-box techniques.

8.2.1 Dynamic vs Static
Traditional dynamic test-case prioritization techniques [72, 84, 177] mainly

reply on dynamic execution information (e.g., statement or method coverage)

to prioritize tests. Although effective, theymay not be suitable for all the cases.

For some software systems, it may not be possible to collect dynamic execu-

tion information via code instrumentation, e.g., code instrumentation may

interrupt normal test run for real-time systems. For some software systems,

dynamic execution information may not be always precise, e.g., code with

concurrency and randomness. Even it is possible to collect precise dynamic

execution for some software systems, dynamic instrumentation may incur

high overhead, e.g., even the coarse file/class-level dynamic information

may incur 8� slowdown for commons-math [205]. Finally, the dynamic exe-

cution information may not always be available on the old version [137, 206].

Therefore, Zhang et al. [137] firstly proposed to use static analysis to simulate

the dynamic execution information. More specifically, they used the static

call graph information of each test to simulate the method-level coverage of

the test, since the static call graph is always a superset of the actual method

coverage. Later on, Mei et al. [206] further extended the call-graph-based test

26 Yiling Lou et al.



prioritization techniques via considering the method body information. Ledru

et al. [161] directly treated each test (e.g., test source code or test input) as a string

and prioritized tests tomaximum string distances of the executed tests. Themain

insight is that executingmore diverse tests may have higher probability to detect

unknown regression bugs. Thomas et al. [148] found that simply treating each

test as a string may include useless terms while missing important latent terms

of the test. Therefore, they proposed to further use topic model to infer the

latent semantic representation of each test. Then, they computed the string

distances between test semantic representations, and prioritized tests to execute

more diverse tests.

Although various static test-case prioritization techniques have been pro-

posed, there lack extensive studies comparing different static techniques as

well as comparing static techniques against dynamic techniques. For exam-

ple, the call-graph-based techniques [137, 206] were not compared against

other static techniques since there were no other static techniques before,

while the more recent topic-model-based technique was only evaluated

using only two subject systems. Therefore, recently, Luo et al. [70] performed

an extensive study on state-of-the-art static and dynamic test-case prioritiza-

tion techniques using 30 modern real-world GitHub projects. The study

results show that the call-graph-based techniques outperform all the studied

dynamic and static techniques at the test-class level, while the topic-model-

based technique performs better than other static techniques but worse than

two dynamic techniques at the test-method level. The call-graph-based tech-

niques have also been shown to incur the lowest prioritization overhead

among all the static techniques. Overall, while almost all techniques perform

better at the test-method level, the static techniques perform comparatively

worse to dynamic techniques at the test method level as opposed to the test

class level. Finally, the study results show that there isminimal overlap between

the detected faults by the static and dynamic techniques, e.g., top 10% prior-

itized tests only share less than 30% of detected faults, indicating a promising

future for applying static and dynamic test-case prioritization in tandem.

8.2.2 Block-Box vs White-Box
Since the first proposal of test-case prioritization two decades ago [29, 67],

white-box test-case prioritization techniques have been intensively studied.

Such white-box techniques rely on the source code or dynamic execution

information (obtained via code instrumentation) of the program under test

to perform effective test-case prioritization. However, such techniques may

not be applicable when the program source code and dynamic execution

27A Survey on Regression Test-Case Prioritization



information are not accessible or available. Furthermore, white-box tech-

niques can be expensive due to the collection of dynamic execution infor-

mation [137, 206]. Therefore, researchers have also proposed black-box

test-case prioritization techniques which do not require accessing source

code or performing code instrumentation. Bryce and Colbourn [130,

134] proposed the first black-box test-case prioritization technique inspired

by combinatorial interaction testing (CIT). Based on the test input informa-

tion, they adopted a “one-test-at-a-time” greedy approach to prioritize test

cases to achieve high pair-wise interactions of the test inputs faster. Bryce

et al. [115, 207] later used t-wise interaction from CIT to prioritize test cases

for GUI applications. Qu et al. [208, 209] also used the notion of CIT to

prioritize tests for the highly configurable software systems (e.g., software

product lines). Henard et al. [210] recently proposed a search-based tech-

nique to prioritize the configurations for testing highly configurable soft-

ware systems based on CIT.

Due to the presence of various black-box and white-box test-case pri-

oritization techniques, it can be hard for the developers or testers to choose

the right technique. Therefore, recently, Henard et al. [69] systematically

studied and compared the existing white-box and black-box test-case pri-

oritization techniques. They studied 20 state-of-the-art test-case prioritiza-

tion techniques, including 10 white-box techniques and 10 black-box

techniques. The study was performed on six real-world C programs, widely

used in prior work on test-case prioritization. The study results reveal a

number of practical guidelines. First, the CIT and diversity-based techniques

perform the best among all studied black-box test-case prioritization

techniques. Second, although white-box techniques outperform black-box

techniques for the majority of the cases, surprisingly, the performance

(in terms of APFD) difference between white-box and black-box techniques

is negligible, e.g., at most 4% APFD difference. Third, the overlap between

the faults detected by the black-box and white-box techniques tend to be

high: the first 10% prioritized tests agree on over 60% of the detected faults.

Overall, the study provides practical guidelines that the developers or testers

who may not have source code information available can use black-box test-

case prioritization as a reliable substitute of white-box test-case prioritization.

9. SOME DISCUSSIONS

In this section, we first discuss existing issues in test-case prioritization

following the previous classification and then point out some other chal-

lenge problems and potential future work in test-case prioritization.

28 Yiling Lou et al.



9.1 Existing Issues
In this section, we discuss the existing issues in test-case prioritization

through three aspects—criteria, measurements, and empirical studies.

9.1.1 Criteria
Testing criteria are used to guide the selection of test cases in test-case pri-

oritization. Most of the widely used testing criteria can be classified into two

categories, structural coverage-based criteria and mutation-based criteria.

However, these two types of testing criteria are either less precise or costly.

In particular, the structural coverage criteria (e.g., statement coverage or

branch coverage) actually measure the percentage of code elements (e.g.,

statements or branches) covered by a test case or a test suite. That is, these

coverage criteria measure the effectiveness of only test input, ignoring test

oracle [211, 212]. Therefore, such a type of criteria is less precise. On the

contradictory, mutation-based criteria tend to measure the effectiveness

of a test case or a test suite based on the output of the program. Therefore,

mutation-based criteria consider both test input and test oracle, which seem

to have higher precision than coverage-based criteria. However, mutation

testing suffers from the widely known cost issue. To sum up, neither struc-

tural coverage-based criteria nor mutation-based criteria are good enough

serving as testing criteria, and thus another precise but less costly testing

criterion is needed. Recently, Zhang et al. [213] proposed predictive muta-

tion testing (PMT). The approach built predictive models based on a series

of lightweight features related to mutants and tests, and predicts mutant

execution results without executing the mutants. It greatly reduces the cost

of mutation testing while incurring only minor loss of accuracy, which may

provide effective but efficient supports for future test-case prioritization.

9.1.2 Measurement
First, the effectiveness measurement taken by the existing work has obvious

flaws. In the past, most of the existing work evaluated test-case prioritization

techniques based on APFD [84]. However, APFD assumes that all the tests

have the same execution time and treats them equivalently, which is usually

not true in practice. For example, for projectMapDB [214], the test with the

longest running time spends 8.8*105Xmore time than that with the shortest

running time. To address this measurement issue, Elbaum et al. [33] pro-

posed a cost-cognizant version of APFD, APFDC, which considers different

test costs and fault severities. Since fault severities can be hard to determine in

practice, Epitropakis et al. [180] simplified this measurement by assuming all

29A Survey on Regression Test-Case Prioritization



faults have the same severity. We encourage researchers to evaluate future

test-case prioritization work using APFDC or simplified APFDC to explicitly

consider test execution time. Meanwhile, APFDC may also not be suitable

for all cases, since its values are influenced by various factors like the number

of tests, the number of faults. Therefore, it is hard to use the values of such

measurements to explain the effectiveness of a prioritization technique in

different cases. To illustrate, we can hardly tell whether a prioritization tech-

nique whose APFDC value is 0.7800 is good or not for a particular test suite.

Furthermore, such measurements do not explicitly consider the actual

switching costs between test executions (e.g., time to load and schedule the

next test). In the future, we suggest researchers to also consider measuring

test-case prioritization techniques based on the actual time spent on fault detec-

tion, e.g., TTFF (time to detect the first fault) andTTLF (time to detect the last

fault), since such measurements precisely measure the actual time cost during

regression testing.

Second, the efficiency measurement is mostly ignored in test-case priori-

tization, although its results influence the usage of test-case prioritization

techniques. In the past, the efficiency of test-case prioritization is mostly eval-

uated through complexity analysis rather than the actual prioritization time.

However, the complexity of some prioritization algorithms (e.g., genetic

algorithm [72]) can be hard to estimate. Furthermore, although the time com-

plexity of some algorithms (e.g., integer linear programming-based algorithm

[82]) is large, their actual prioritization time may be acceptable since the test-

case prioritization process is usually performed offline beforehand, i.e., before

the new version is ready. On the other hand, the efficiency of test-case prior-

itization can also be crucial for some cases (e.g., version-specific test-case pri-

oritization). In such cases, test-case prioritization is usually performed online

(e.g., after the new version is ready), making it unbearable when the prioriti-

zation time is close to the time spent on test-case execution. Therefore, it

is necessary to study the end-to-end testing time (i.e., including the prioriti-

zation time and the test execution time) for the online test-case prioritization

techniques.

Finally, besides the prioritization cost, it is also important to measure the

cost on collecting the necessary data required by test-case prioritization tech-

niques. Most prioritization techniques require extra information besides

test cases (e.g., structural coverage) for test-case prioritization. Apparently,

obtaining such information may occur extra cost. However, many studies

simply take the information as given and do not report the collection cost.

In particular, some prioritization techniques require structural coverage

30 Yiling Lou et al.



[84], static coverage [206], or mutation execution information on some early

version [95]. Although such information is usually collected offline, i.e.,

before test-case prioritization, it still consumes computing resources and

should be measured to provide practical guidelines.

9.1.3 Empirical Studies
In the literature, existing empirical studies investigated the various factors

(e.g., programming languages [203], coverage granularity and type [203, 206],

fault type [156, 204], test granularity [95, 206], and constraints [192]) that

may influence the effectiveness and efficiency of test-case prioritization.

Besides these factors, it is also important to investigate the following (but

not limited to) factors.

Some experimental factors have been recognized as threats in the past,

e.g., subjects, faults, and test cases, but they are seldom studied. For example,

subjects are a widely recognized external factor, but the early work of test-

case prioritization (especially the papers published around 2000) mostly used

the seven small programs (whose number of lines of code is smaller than 600)

in Siemens as the subjects. Fortunately, this threat is reduced to some extent

after 2000, because researchers started to use larger projects, e.g., grep and gzip

whose number of lines of code is about 10,000. Furthermore, most prior

work uses mutation faults or seeded faults, which may be a nonnegligible

threat, since there might be some gap between mutants and real faults during

software evolution. In other words, we suggest considering using real regres-

sion faults in test-case prioritization.

Besides these well-recognized threats, researchers started to notice

the difference between practice and existing experimental setup of test-case

prioritization. For example, recently Lu et al. [68] identified another one

important flawed setting in the existing evaluation, evolution of source code

and test cases. That is, previous work on test-case prioritization is usually

evaluated based on the source code and test cases with artificial changes sim-

ulated via mutation testing, which do not represent real software evolution.

Lu et al. [68] investigated the influence of this factor on the effectiveness of

many existing general prioritization techniques, and found that changes on

source code do not have much influence on the effectiveness of test-case

prioritization, but changes on test code (e.g., test additions) do have.

9.2 Other Challenging Problems
Besides these issues in the current work, test-case prioritization, test-case

prioritization also suffers from other challenging problems.

31A Survey on Regression Test-Case Prioritization



9.2.1 Intermediate/Ultimate Goal
Test-case prioritization has been studied for long, and a large number of

prioritization techniques have been proposed and investigated in the literature.

However, most of the prioritization techniques are less effective than the

simple greedy algorithm, such as the additional algorithm, resulting from

the difference between the ultimate goal and the intermediate goal of test-case

prioritization. In particular, as the ultimate goal of test-case prioritization can

hardly serve to guide prioritization, existing prioritization techniques actually

use an intermediate goal instead, and thus these “well-designed” prioritization

techniques do not optimize the execution order of test cases in terms of the

ultimate goal. In recent years, researchers in test-case prioritization started

to notice this fact [72] and investigated this fact [182]. Unfortunately, no work

in the literature actually solves this problem, and it becomes a fundamental

challenge for test-case prioritization. In the future, researchers should investi-

gate other intermediate goals (e.g., detection of mutation faults or detection

of similar real faults), which have closer relationship with the ultimate goal

rather than the existing intermediate goals (e.g., structural coverage).

9.2.2 Practical Values
Test-case prioritization is a practical problem raised from industry, and thus

it is important to study test-case prioritization in practice.

Test-case prioritization aims to facilitate fault detection in software

testing, and thus it brings more benefits when the time spent on test-case exe-

cution is not ignorable (e.g., several days or months). In other words, when

the total execution time of all test cases is small (e.g., several minutes), it does

not matter so much whether a fault is detected by the first test case or the last

test case. However, to our knowledge, most of the existing research work is

actually evaluated on the subjects whose total execution time of test cases is

not large at all. That is, the existing techniques are not evaluated in its most

possible application scenario. In other word, to facilitate practical usage, it is

necessary to investigate test case prioritization in a proper practical scenario.

Besides, test-case prioritizationmay have variants besides its default setting.

Traditionally, test-case prioritization aims to address the test effectiveness

problem when the total execution time of test cases are long. However, in

practice, it may be costly to run an individual test case. In particular, a test suite

may consist of only several test cases, each of which consumes long execution

time. Therefore, it is also interesting to study how to optimize the execution

of an individual test case, e.g., transferring a test case with long execution time

to several test cases with short execution time by modifying its components

32 Yiling Lou et al.



(e.g., test input data). Apparently, this problem is different from the existing

prioritization problem, and thus a totally new method for this problem is

needed.

Furthermore, surprisingly, to the best of our knowledge, although test-

case prioritization techniques have been studied for decades, there still lack

practical test-case prioritization tools that are effective and easy to use. For

example, despite the large number of papers on JUnit test-case prioritization,

there is no practical test prioritization technique fully integrated with JUnit.

To demonstrate the practical value of test-case prioritization, we encourage

the researchers to provide practical tool supports on test-case prioritization

in the near future.

In summary, although test-case prioritization has been studied for

decades, it is yet not fully explored and evaluated, leaving many future work

in this promising area. In addition, to gain practical impacts, we encourage

researchers to investigate this problem in real practical scenarios and provide

practical tool supports.

10. CONCLUSION

To alleviate the cost of regression testing, test-case prioritization is pro-

posed, which aims to achieve some testing requirements by scheduling the

execution order of test cases. This domain has been studied for decades and

dedicated efforts have beenmade accordingly. In this work, we conduct a sur-

vey to systematically investigate the existing work on test-case prioritization.

More specifically, in this survey,we review the existingwork by classifying

them into six categories: algorithms, criteria, measurements, constraints,

scenarios, and empirical studies. Based on these analyses, we further discuss

challenges, issues, and future opportunities in test-case prioritization.

ACKNOWLEDGMENTS
This work is supported in part by NSF Grant No. CCF-1566589, UT Dallas faculty start-up

fund, Google Faculty Research Award, Samsung GRO Award, and generous supports from

Huawei, the National Key Research and Development Program 2016YFB1000801, and the

National Natural Science Foundation of China under Grant No. 61522201.

REFERENCES
[1] S. Yoo, M. Harman, Regression testing minimization, selection and prioritization:

a survey, Softw. Test. Verification Reliab. 22 (2) (2012) 67–120.
[2] G. Rothermel, M.J. Harrold, J. Von Ronne, C. Hong, Empirical studies of test-suite

reduction, Softw. Test. Verification Reliab. 12 (4) (2002) 219–249.

33A Survey on Regression Test-Case Prioritization

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0010
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0010
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0015
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0015


[3] J. Zhang, Y. Lou, L. Zhang, D. Hao, L. Zhang, H. Mei, Isomorphic regression testing:
executing uncovered branches without test augmentation, in: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESE, 2016, pp. 883–894.

[4] P.K. Chittimalli, M.J. Harrold, Recomputing coverage information to assist regression
testing, IEEE Trans. Softw. Eng. 35 (4) (2009) 452–469.

[5] S. Elbaum, G. Rothermel, J. Penix, Techniques for improving regression testing in
continuous integration development environments, in: FSE, 2014, pp. 235–245.

[6] Testing at the speed and scale of Google, 2011, http://goo.gl/2B5cyl.
[7] Tools for Continuous Integration at Google Scale, 2011, https://goo.gl/Gqj7uL.
[8] M.J. Harrold, R. Gupta, M.L. Soffa, A methodology for controlling the size of a test

suite, ACM Trans. Softw. Eng. Methodol. 2 (3) (1993) 270–285.
[9] J. Pan, L.T. Center, Procedures for reducing the size of coverage-based test sets,

in: Proceedings of International Conference on Testing Computer Software, 1995.
[10] J. Black, E. Melachrinoudis, D. Kaeli, Bi-criteria models for all-uses test suite reduc-

tion, in: Proceedings of the 26th International Conference on Software Engineering,
IEEE Computer Society, 2004, pp. 106–115.

[11] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, B. Xie, How do assertions
impact coverage-based test-suite reduction? Proceedings of the 10th International
Conference on Software Testing, Verification and Validation, 2017, pp. 418–423.

[12] T.Y. Chen, M.F. Lau, A new heuristic for test suite reduction, Inf. Softw. Technol.
40 (5–6) (1998) 347–354.

[13] D. Jeffrey, N. Gupta, Test suite reduction with selective redundancy, in: IEEE Inter-
national Conference on Software Maintenance, IEEE, 2005, pp. 549–558.

[14] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, A. Souter, An empirical comparison of
test suite reduction techniques for user-session-based testing of web applications,
in: IEEE International Conference on SoftwareMaintenance, IEEE, 2005, pp. 587–596.

[15] H. Zhong, L. Zhang, H.Mei, An experimental study of four typical test suite reduction
techniques, Inf. Softw. Technol. 50 (6) (2008) 534–546.

[16] G. Fraser, F. Wotawa, Redundancy based test-suite reduction, Fundam. Approaches
Softw. Eng. (2007) 291–305.

[17] K.F. Fischer, A test case selection method for the validation of software maintenance
modifications, in: Computer Software and Applications Conference, vol. 77, 1977,
pp. 421–426.

[18] K. Fischer, F. Raji, A. Chruscicki, A methodology for retesting modified software,
in: Proceedings of the National Telecommunications Conference B-6-3, 1981, pp. 1–6.

[19] G. Rothermel, M.J. Harrold, Selecting tests and identifying test coverage requirements
for modified software, in: Proceedings of the 1994 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ACM, 1994, pp. 169–184.

[20] G. Rothermel, M.J. Harrold, A safe, efficient regression test selection technique, ACM
Trans. Softw. Eng. Methodol. 6 (2) (1997) 173–210.

[21] S. Yoo, M. Harman, Pareto efficient multi-objective test case selection, in: International
Symposium on Software Testing and Analysis, ACM, 2007, pp. 140–150.

[22] M. Grindal, B. Lindstr€om, J. Offutt, S.F. Andler, An evaluation of combination
strategies for test case selection, Empir. Softw. Eng. 11 (4) (2006) 583–611.

[23] S. Fujiwara, G.V. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi, Test selection
based on finite state models, IEEE Trans. Softw. Eng. 17 (6) (1991) 591–603.

[24] T.L. Graves, M.J. Harrold, J.-M. Kim, A. Porter, G. Rothermel, An empirical study of
regression test selection techniques, ACMTrans. Softw. Eng. Methodol. 10 (2) (2001)
184–208.

[25] Y. Chen, R.L. Probert, D.P. Sims, Specification-based regression test selection with
risk analysis, in: Conference of the Centre for Advanced Studies on Collaborative
Research, IBM Press, 2002, p. 1.

34 Yiling Lou et al.

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0020
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0020
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0020
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0020
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0025
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0025
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0030
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0030
http://goo.gl/2B5cyl
http://goo.gl/2B5cyl
https://goo.gl/Gqj7uL
https://goo.gl/Gqj7uL
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0045
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0045
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0050
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0050
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0055
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0055
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0055
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0060
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0060
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0060
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0065
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0065
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0070
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0070
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0075
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0075
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0075
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0080
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0080
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0085
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0085
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0090
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0090
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0090
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0095
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0095
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0100
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0100
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0100
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0105
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0105
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0110
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0110
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0115
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0115
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0115
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0120
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0120
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0125
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0125
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0125
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0130
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0130
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0130


[26] G. Rothermel, M.J. Harrold, Analyzing regression test selection techniques, IEEE
Trans. Soft. Eng. 22 (8) (1996) 529–551.

[27] L.C. Briand, Y. Labiche, S. He, Automating regression test selection based on UML
designs, Inf. Softw. Technol. 51 (1) (2009) 16–30.

[28] L. Zhang, Hybrid regression test selection, in: ICSE, 2018, pp. 199–209. (to appear).
[29] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Test case prioritization: an empir-

ical study, in: IEEE International Conference on Software Maintenance, IEEE, 1999,
pp. 179–188.

[30] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Prioritizing test cases for regres-
sion testing, IEEE Trans. Softw. Eng. 27 (10) (2001) 929–948.

[31] S. Elbaum, D. Gable, G. Rothermel, Understanding and measuring the sources of
variation in the prioritization of regression test suites, in: Proceedings. Seventh
International Software Metrics Symposium, 2001, IEEE, 2001, pp. 169–179.

[32] J.A. Jones, M.J. Harrold, Test-suite reduction and prioritization for modified condi-
tion/decision coverage, IEEE Trans. Softw. Eng. 29 (3) (2003) 195–209.

[33] S. Elbaum, A. Malishevsky, G. Rothermel, Incorporating varying test costs and
fault severities into test case prioritization, in: Proceedings of the 23rd International
Conference on Software Engineering, IEEE Computer Society, 2001, pp. 329–338.

[34] Z.-W. He, C.-G. Bai, GUI test case prioritization by state-coverage criterion,
in: Proceedings of the 10th International Workshop on Automation of Software Test,
IEEE Press, 2015, pp. 18–22.

[35] H. Hemmati, Z. Fang, M.V. Mantyla, Prioritizing manual test cases in traditional and
rapid release environments, in: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation, IEEE, 2015, pp. 1–10.

[36] E.J. Rapos, J. Dingel, Using fuzzy logic and symbolic execution to prioritize UML-
RT test cases, in: 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation, IEEE, 2015, pp. 1–10.

[37] B. Jiang, W.K. Chan, T.H. Tse, PORA: proportion-oriented randomized algorithm
for test case prioritization, in: 2015 IEEE International Conference on Software
Quality, Reliability and Security, IEEE, 2015, pp. 131–140.

[38] D. Marijan, Multi-perspective regression test prioritization for time-constrained envi-
ronments, in: 2015 IEEE International Conference on Software Quality, Reliability
and Security, IEEE, 2015, pp. 157–162.

[39] D. Di Nucci, A. Panichella, A. Zaidman, A. De Lucia, Hypervolume-based search
for test case prioritization, in: International Symposium on Search Based Software
Engineering, Springer, 2015, pp. 157–172.

[40] F. Yuan, Y. Bian, Z. Li, R. Zhao, Epistatic genetic algorithm for test case prioritiza-
tion, in: International Symposium on Search Based Software Engineering, Springer,
2015, pp. 109–124.

[41] Y. Bian, S. Kirbas, M. Harman, Y. Jia, Z. Li, Regression test case prioritisation
for guava, in: International Symposium on Search Based Software Engineering,
Springer, 2015, pp. 221–227.

[42] C. Jia, L. Mei, W.K. Chan, Y.-T. Yu, T.H. Tse, Is XML-based test case prioritization
for validating WS-BPEL evolution effective in both average and adverse scenarios?
in: 2014 IEEE International Conference on Web Services, IEEE, 2014, pp. 233–240.

[43] X. Zhang, T. Chen, H. Liu, An application of adaptive random sequence in test case
prioritization, in: 26th International Conference on Software Engineering and Knowl-
edge Engineering, Knowledge Systems Institute Graduate School, 2014, pp. 126–131.

[44] D. Marijan, A. Gotlieb, S. Sen, Test case prioritization for continuous regression
testing: an industrial case study, in: IEEE International Conference on Software
Maintenance, IEEE, 2013, pp. 540–543.

[45] R. Malhotra, D. Tiwari, Development of a framework for test case prioritization using
genetic algorithm, ACM SIGSOFT Softw. Eng. Notes 38 (3) (2013) 1–6.

35A Survey on Regression Test-Case Prioritization

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0135
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0135
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0140
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0140
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0145
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0150
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0150
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0150
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0155
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0155
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0160
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0160
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0160
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0165
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0165
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0170
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0170
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0170
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0175
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0175
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0175
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0180
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0180
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0180
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0185
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0185
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0185
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0190
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0190
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0190
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0195
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0195
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0195
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0200
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0200
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0200
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0205
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0205
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0205
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0210
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0210
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0210
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0215
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0215
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0215
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0220
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0220
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0220
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0225
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0225
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0225
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0230
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0230


[46] W. Sun, Z. Gao, W. Yang, C. Fang, Z. Chen, Multi-objective test case prioritization
for GUI applications, in: Proceedings of the 28th Annual ACM Symposium on
Applied Computing, ACM, 2013, pp. 1074–1079.

[47] D. Garg, A. Datta, T. French, A novel bipartite graph approach for selection and
prioritisation of test cases, ACM SIGSOFT Softw. Eng. Notes 38 (6) (2013) 1–6.

[48] D. Di Nardo, N. Alshahwan, L. Briand, Y. Labiche, Coverage-based test case
prioritisation: an industrial case study, in: 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, IEEE, 2013, pp. 302–311.

[49] H. Srikanth, S. Banerjee, Improving test efficiency through system test prioritization,
J. Syst. Softw. 85 (5) (2012) 1176–1187.

[50] M.M. Islam, A. Marchetto, A. Susi, F.B. Kessler, G. Scanniello, MOTCP: a tool for
the prioritization of test cases based on a sorting genetic algorithm and Latent Semantic
Indexing, in: IEEE International Conference on Software Maintenance, IEEE, 2012,
pp. 654–657.

[51] C. Malz, N. Jazdi, P. Gohner, Prioritization of test cases using software agents and
fuzzy logic, in: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, IEEE, 2012, pp. 483–486.

[52] P. de Alcaˇntara dos Santos Neto, R. Britto, T. Soares, W. Ayala, J. Cruz,
R.A.L. Rabelo, Regression testing prioritization based on fuzzy inference systems,
in: International Conference on Software Engineering and Knowledge Engineering,
2012, pp. 273–278.

[53] H. Yoon, B. Choi, A test case prioritization based on degree of risk exposure and its
empirical study, Int. J. Softw. Eng. Knowl. Eng. 21 (2) (2011) 191–209.

[54] E. Shihab, Z.M. Jiang, B. Adams, A.E. Hassan, R. Bowerman, Prioritizing the creation
of unit tests in legacy software systems, Softw. Pract. Exp. 41 (10) (2011) 1027–1048.

[55] R. Carlson, H. Do, A. Denton, A clustering approach to improving test case priori-
tization: an industrial case study, in: IEEE International Conference on Software
Maintenance, IEEE, 2011, pp. 382–391.

[56] S. Sampath, R.C. Bryce, S. Jain, S. Manchester, A tool for combination-based prior-
itization and reduction of user-session-based test suites, in: IEEE International
Conference on Software Maintenance, IEEE, 2011, pp. 574–577.

[57] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, A. Teterev, Crane: failure prediction,
change analysis and test prioritization in practice-experiences from windows, in: 2011
IEEE Fourth International Conference on Software Testing, Verification and
Validation, IEEE, 2011, pp. 357–366.

[58] E. Engstr€om, P. Runeson, A. Ljung, Improving regression testing transparency
and efficiency with history-based prioritization-an industrial case study, in: 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation,
IEEE, 2011, pp. 367–376.

[59] N. Kaushik, M. Salehie, L. Tahvildari, S. Li, M. Moore, Dynamic prioritization in
regression testing, in: 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops, IEEE, 2011, pp. 135–138.

[60] C. Malz, P. G€ohner, Agent-based test case prioritization, in: 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops, IEEE, 2011, pp. 149–152.

[61] E. Salecker, R. Reicherdt, S. Glesner, Calculating prioritized interaction test sets
with constraints using binary decision diagrams, in: 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation Workshops, IEEE,
2011, pp. 278–285.

[62] B. Jiang, W.K. Chan, On the integration of test adequacy, test case prioritization,
and statistical fault localization, in: 2010 10th International Conference on Quality
Software, IEEE, 2010, pp. 377–384.

36 Yiling Lou et al.

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0235
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0235
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0235
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0240
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0240
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0245
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0245
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0245
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0250
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0250
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0255
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0255
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0255
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0255
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0260
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0260
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0260
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0265
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0265
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0265
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0265
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0270
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0270
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0275
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0275
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0280
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0280
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0280
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0285
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0285
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0285
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0290
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0290
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0290
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0290
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0295
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0295
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0295
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0295
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0295
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0300
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0300
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0300
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0305
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0305
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0305
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0305
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0310
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0310
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0310
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0310
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0315
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0315
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0315


[63] E. Shihab, Z.M. Jiang, B. Adams, A.E. Hassan, R. Bowerman, Prioritizing unit test
creation for test-driven maintenance of legacy systems, in: 2010 10th International
Conference on Quality Software, IEEE, 2010, pp. 132–141.

[64] L. Chen, Z. Wang, L. Xu, H. Lu, B. Xu, Test case prioritization for web service
regression testing, in: 2010 Fifth IEEE International Symposium on Service Oriented
System Engineering, IEEE, 2010, pp. 173–178.

[65] C.L.B. Maia, R.A.F. do Carmo, F.G. de Freitas, G.A.L. de Campos, J.T. de Souza,
Automated test case prioritization with reactive GRASP, Adv. Softw. Eng. 2010 (2010).

[66] A. Srivastava, J. Thiagarajan, Effectively prioritizing tests in development environment,
in: ACM SIGSOFT Software Engineering Notes, vol. 27, ACM, 2002,
pp. 97–106.

[67] W.E. Wong, J.R. Horgan, S. London, H. Agrawal, A study of effective regression
testing in practice, in: International Symposium on Software Reliability Engineering,
1997, pp. 264–274.

[68] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, L. Zhang, How does regression
test prioritization perform in real-world software evolution? in: Proceedings of the
38th International Conference on Software Engineering, ACM, 2016, pp. 535–546.

[69] C. Henard, M. Papadakis, M. Harman, Y. Jia, Y. Le Traon, Comparing white-box and
black-box test prioritization, in: Proceedings of the 38th International Conference on
Software Engineering, ACM, 2016, pp. 523–534.

[70] Q. Luo, K. Moran, D. Poshyvanyk, A large-scale empirical comparison of static and
dynamic test case prioritization techniques, in: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
ACM, 2016, pp. 559–570.

[71] D. Hao, L. Zhang, H. Mei, Test-case prioritization: achievements and challenges,
Front. Comp. Sci. 10 (5) (2016) 769–777.

[72] Z. Li, M. Harman, R.M. Hierons, Search algorithms for regression test case prioriti-
zation, IEEE Trans. Softw. Eng. 33 (4) (2007) 225–237.

[73] S. Li, N. Bian, Z. Chen, D. You, Y. He, A simulation study on some search algorithms
for regression test case prioritization, in: 2010 10th International Conference on
Quality Software (QSIC), IEEE, 2010, pp. 72–81.

[74] Y. Singh, A. Kaur, B. Suri, S. Singhal, Systematic literature review on regression test
prioritization techniques, Informatica (Slovenia) 36 (4) (2012) 379–408.

[75] C. Catal, D. Mishra, Test case prioritization: a systematic mapping study, Softw. Qual.
J. 21 (3) (2013) 445–478.

[76] Debian https://www.debian.org/, n.d.
[77] Git, https://git-scm.com/, n.d.
[78] Mercurial, https://www.mercurial-scm.org/, n.d.
[79] GitHub, https://github.com/, n.d.
[80] Travis CI, https://travis-ci.org/, n.d.
[81] Jenkins CI, https://jenkins.io/, n.d.
[82] L. Zhang, S.-S. Hou, C. Guo, T. Xie, H. Mei, Time-aware test-case prioritization

using integer linear programming, in: Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ACM, 2009, pp. 213–224.

[83] G. Fraser, A. Arcuri, Evosuite: automatic test suite generation for object-oriented soft-
ware, in: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ACM, 2011, pp. 416–419.

[84] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Test case prioritization: an
empirical study, in: IEEE International Conference on Software Maintenance, 1999,
pp. 179–188.

[85] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Prioritizing test cases for regression
testing, IEEE Trans. Softw. Eng. 27 (10) (2001) 929–948.

37A Survey on Regression Test-Case Prioritization

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0320
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0320
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0320
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0325
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0325
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0325
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0330
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0330
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0335
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0335
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0335
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0340
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0340
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0340
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0345
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0345
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0345
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0350
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0350
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0350
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0355
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0355
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0355
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0355
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0360
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0360
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0365
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0365
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0370
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0370
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0370
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0375
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0375
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0380
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0380
https://www.debian.org/
https://www.debian.org/
https://git-scm.com/
https://git-scm.com/
https://www.mercurial-scm.org/
https://www.mercurial-scm.org/
https://github.com/
https://github.com/
https://travis-ci.org/
https://travis-ci.org/
https://jenkins.io/
https://jenkins.io/
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0415
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0415
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0415
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0420
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0420
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0420
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0425
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0425
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0425
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0430
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0430


[86] J. Qian, D. Zhou, Prioritizing test cases for memory leaks in android applications,
J. Comput. Sci. Technol. 31 (5) (2016) 869–882.

[87] R. Huang, W. Zong, J. Chen, D. Towey, Y. Zhou, D. Chen, Prioritizing interaction
test suites using repeated base choice coverage, in: Computer Software and Applica-
tions Conference, vol. 1, IEEE, 2016, pp. 174–184.

[88] S.Wang, S. Ali, T. Yue, Ø. Bakkeli, M. Liaaen, Enhancing test case prioritization in an
industrial setting with resource awareness and multi-objective search, in: Proceedings
of the 38th International Conference on Software Engineering Companion, ACM,
2016, pp. 182–191.

[89] J. Chen, L. Zhu, T.Y. Chen, R. Huang, D. Towey, F.-C. Kuo, Y. Guo, An adaptive
sequence approach for OOS test case prioritization, in: International Symposium on
Software Reliability Engineering Wokshops, IEEE, 2016, pp. 205–212.

[90] P.E. Strandberg, D. Sundmark, W. Afzal, T.J. Ostrand, E.J. Weyuker, Experience
report: automated system level regression test prioritization using multiple factors,
in: International Symposium on Software Reliability Engineering, IEEE, 2016,
pp. 12–23.

[91] X. Zhang, X. Xie, T.Y. Chen, Test case prioritization using adaptive random sequence
with category-partition-based distance, in: 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS), IEEE, 2016, pp. 374–385.

[92] H. Wang, J. Xing, Q. Yang, D. Han, X. Zhang, Modification impact analysis
based test case prioritization for regression testing of service-oriented workflow appli-
cations, in: Computer Software and Applications Conference, vol. 2, IEEE, 2015,
pp. 288–297.

[93] R. Huang, J. Chen, D. Towey, A.T.S. Chan, Y. Lu, Aggregate-strength interaction
test suite prioritization, J. Syst. Softw. 99 (2015) 36–51.

[94] L. Mei, Y. Cai, C. Jia, B. Jiang,W.K. Chan, Z. Zhang, T.H. Tse, A subsumption hier-
archy of test case prioritization for composite services, IEEE Trans. Serv. Comput.
8 (5) (2015) 658–673.

[95] Y. Lou, D. Hao, L. Zhang, Mutation-based test-case prioritization in software
evolution, in: International Symposium on Software Reliability Engineering, IEEE,
2015, pp. 46–57.

[96] T.B. Noor, H. Hemmati, A similarity-based approach for test case prioritization using
historical failure data, in: International Symposium on Software Reliability Engineer-
ing, IEEE, 2015, pp. 58–68.

[97] R. Wang, S. Jiang, D. Chen, Similarity-based regression test case prioritization,
in: International Conference on Software Engineering and Knowledge Engineering,
2015, pp. 358–363.

[98] H. Srikanth, S. Banerjee, L.Williams, J. Osborne, Towards the prioritization of system
test cases, Softw. Test. Verification Reliab. 24 (4) (2014) 320–337.

[99] K. Zhai, B. Jiang, W.K. Chan, Prioritizing test cases for regression testing of
location-based services: metrics, techniques, and case study, IEEE Trans. Serv. Comput.
7 (1) (2014) 54–67.

[100] C. Fang, Z. Chen, K. Wu, Z. Zhao, Similarity-based test case prioritization using
ordered sequences of program entities, Softw. Qual. J. 22 (2) (2014) 335–361.

[101] R. Huang, J. Chen, R. Wang, D. Chen, How to do tie-breaking in prioritization of
interaction test suites? in: International Conference on Software Engineering and
Knowledge Engineering, 2014, pp. 121–125.

[102] R. Huang, X. Xie, D. Towey, T.Y. Chen, Y. Lu, J. Chen, Prioritization of combi-
natorial test cases by incremental interaction coverage, Int. J. Softw. Eng. Knowl. Eng.
23 (10) (2013) 1427–1457.

[103] T. Miller, et al., Using dependency structures for prioritization of functional test suites,
IEEE Trans. Softw. Eng. 39 (2) (2013) 258–275.

38 Yiling Lou et al.

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0435
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0435
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0440
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0440
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0440
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0445
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0445
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0445
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0445
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0450
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0450
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0450
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0455
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0455
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0455
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0455
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0460
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0460
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0460
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0465
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0465
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0465
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0465
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0470
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0470
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0475
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0475
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0475
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0480
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0480
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0480
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0485
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0485
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0485
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0490
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0490
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0490
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0495
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0495
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0500
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0500
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0500
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0505
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0505
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0510
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0510
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0510
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0515
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0515
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0515
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0520
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0520


[104] D. Hao, X. Zhao, L. Zhang, Adaptive test-case prioritization guided by output inspec-
tion, in: Computer Software and Applications Conference, IEEE, 2013, pp. 169–179.

[105] E.L.G. Alves, P.D.L. Machado, T. Massoni, S.T.C. Santos, A refactoring-based
approach for test case selection and prioritization, in: 2013 8th InternationalWorkshop
on Automation of Software Test, IEEE, 2013, pp. 93–99.

[106] J.F.S. Ouriques, Strategies for prioritizing test cases generated through model-based
testing approaches, in: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 2, IEEE, 2015, pp. 879–882.

[107] L. Mei, Y. Cai, C. Jia, B. Jiang, W.K. Chan, Prioritizing structurally complex test pairs
for validating WS-BPEL evolutions, in: 2013 IEEE 20th International Conference on
Web Services (ICWS), IEEE, 2013, pp. 147–154.

[108] Y.-C. Huang, K.-L. Peng, C.-Y. Huang, A history-based cost-cognizant test case
prioritization technique in regression testing, J. Syst. Softw. 85 (3) (2012) 626–637.

[109] Y. Ledru, A. Petrenko, S. Boroday, N. Mandran, Prioritizing test cases with string
distances, Autom. Softw. Eng. 19 (1) (2012) 65–95.

[110] K. Wu, C. Fang, Z. Chen, Z. Zhao, Test case prioritization incorporating ordered
sequence of program elements, in: Proceedings of the 7th International Workshop
on Automation of Software Test, IEEE Press, 2012, pp. 124–130.

[111] P. Caliebe, T. Herpel, R. German, Dependency-based test case selection and priori-
tization in embedded systems, in: 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, IEEE, 2012, pp. 731–735.

[112] M.Staats,P.Loyola,G.Rothermel,Oracle-centric test case prioritization, in: International
Symposium on Software Reliability Engineering, IEEE, 2012, pp. 311–320.

[113] L. Mei, W.K. Chan, T.H. Tse, R.G. Merkel, XML-manipulating test case prioritiza-
tion for XML-manipulating services, J. Syst. Softw. 84 (4) (2011) 603–619.

[114] A. Gonzalez-Sanchez, �E. Piel, R. Abreu, H.-G. Gross, A.J.C. van Gemund, Prioritiz-
ing tests for software fault diagnosis, Softw. Pract. Exp. 41 (10) (2011) 1105–1129.

[115] R.C. Bryce, S. Sampath, A.M. Memon, Developing a single model and test prioriti-
zation strategies for event-driven software, IEEE Trans. Softw. Eng. 37 (1) (2011)
48–64.

[116] Y.-C. Huang, C.-Y. Huang, J.-R. Chang, T.-Y. Chen, Design and analysis
of cost-cognizant test case prioritization using genetic algorithm with test history,
in: Computer Software and Applications Conference, IEEE, 2010, pp. 413–418.

[117] D. Xu, J. Ding, Prioritizing state-based aspect tests, in: 2010 Third International Con-
ference on Software Testing, Verification and Validation, IEEE, 2010, pp. 265–274.

[118] R. Krishnamoorthi, S.A. Sahaaya Arul Mary, Requirement based system test case pri-
oritization of new and regression test cases, Int. J. Softw. Eng. Knowl. Eng. 19 (3)
(2009) 453–475.

[119] X. Qu, Configuration aware prioritization techniques in regression testing,
in: 31st International Conference on Software Engineering-Companion Volume,
2009. ICSE-Companion 2009, IEEE, 2009, pp. 375–378.

[120] I.-C. Yoon, A. Sussman, A. Memon, A. Porter, Prioritizing component compatibility
tests via user preferences, in: IEEE International Conference on Software Mainte-
nance, IEEE, 2009, pp. 29–38.

[121] S.-S. Hou, L. Zhang, T. Xie, J.-S. Sun, Quota-constrained test-case prioritization for
regression testing of service-centric systems, in: IEEE International Conference on
Software Maintenance, IEEE, 2008, pp. 257–266.

[122] S. Sampath, R.C. Bryce, G. Viswanath, V. Kandimalla, A.G. Koru, Prioritizing user-
session-based test cases for web applications testing, in: 2008 1st International Confer-
ence on Software Testing, Verification, and Validation, IEEE, 2008, pp. 141–150.

[123] D. Jeffrey, N. Gupta, Experiments with test case prioritization using relevant slices,
J. Syst. Softw. 81 (2) (2008) 196–221.

39A Survey on Regression Test-Case Prioritization

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0525
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0525
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0530
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0530
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0530
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0535
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0535
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0535
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0540
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0540
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0540
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0545
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0545
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0550
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0550
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0555
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0555
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0555
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0560
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0560
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0560
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0565
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0565
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0570
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0570
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0575
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0575
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0575
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0580
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0580
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0580
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0585
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0585
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0585
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0590
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0590
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0595
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0595
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0595
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0600
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0600
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0600
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0605
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0605
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0605
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0610
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0610
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0610
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0615
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0615
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0615
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0620
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0620


[124] P.R. Srivastva, K. Kumar, G. Raghurama, Test case prioritization based on require-
ments and risk factors, ACM SIGSOFT Softw. Eng. Notes 33 (4) (2008) 7.

[125] Z. Ma, J. Zhao, Test case prioritization based on analysis of program structure, in: 2008.
15th Asia-Pacific Software Engineering Conference, IEEE, 2008, pp. 471–478.

[126] H. Stallbaum, A. Metzger, K. Pohl, An automated technique for risk-based test case
generation and prioritization, in: Proceedings of the 3rd International Workshop on
Automation of Software Test, ACM, 2008, pp. 67–70.

[127] X. Zhang, C. Nie, B. Xu, B. Qu, Test case prioritization based on varying testing
requirement priorities and test case costs, in: Seventh International Conference on
Quality Software, 2007, IEEE, 2007, pp. 15–24.

[128] M. Sherriff, M. Lake, L. Williams, Prioritization of regression tests using singular value
decomposition with empirical change records, in: International Symposium on Soft-
ware Reliability Engineering, IEEE, 2007, pp. 81–90.

[129] A.M. Smith, J. Geiger, G.M. Kapfhammer, M.L. Soffa, Test suite reduction and pri-
oritization with call trees, in: Proceedings of the Twenty-Second IEEE/ACM inter-
national conference on Automated Software Engineering, ACM, 2007, pp. 539–540.

[130] R.C. Bryce, C.J. Colbourn, Prioritized interaction testing for pair-wise coverage with
seeding and constraints, Inf. Softw. Technol. 48 (10) (2006) 960–970.

[131] D. Jeffrey, N. Gupta, Test case prioritization using relevant slices, in: Computer Soft-
ware and Applications Conference, vol. 1, IEEE, 2006, pp. 411–420.

[132] P.L. Li, J. Herbsleb, M. Shaw, B. Robinson, Experiences and results from initiating field
defect prediction and product test prioritization efforts at ABB Inc, in: Proceedings of the
28th International Conference on Software Engineering, ACM, 2006, pp. 413–422.

[133] P. Tonella, P. Avesani, A. Susi, Using the case-based ranking methodology for test case
prioritization, in: IEEE International Conference on Software Maintenance, IEEE,
2006, pp. 123–133.

[134] R.C. Bryce, C.J. Colbourn, Test prioritization for pairwise interaction coverage,
in: ACM SIGSOFT Software Engineering Notes, vol. 30, ACM, 2005, pp. 1–7.

[135] H. Srikanth, L. Williams, On the economics of requirements-based test case prioriti-
zation, in: ACM SIGSOFT Software Engineering Notes, vol. 30, ACM, 2005,
pp. 1–3.

[136] Á. Besz�edes, T. Gergely, L. Schrettner, J. Jász, L. Langó, T. Gyimóthy, Code
coverage-based regression test selection and prioritization in WebKit, in: IEEE Inter-
national Conference on Software Maintenance, IEEE, 2012, pp. 46–55.

[137] L. Zhang, J. Zhou, D. Hao, L. Zhang, H. Mei, Prioritizing JUnit test cases in absence
of coverage information, in: IEEE International Conference on Software Mainte-
nance, IEEE, 2009, pp. 19–28.

[138] B. Korel, G. Koutsogiannakis, Experimental comparison of code-based and model-
based test prioritization, in: International Conference on Software Testing, Verifica-
tion and Validation Workshops, 2009, IEEE, 2009, pp. 77–84.

[139] W.Masri, M. El-Ghali, Test case filtering and prioritization based on coverage of com-
binations of program elements, in: Proceedings of the Seventh InternationalWorkshop
on Dynamic Analysis, ACM, 2009, pp. 29–34.

[140] J.J. Li, D.Weiss, H. Yee, Code-coverage guided prioritized test generation, Inf. Softw.
Technol. 48 (12) (2006) 1187–1198.

[141] D.C. Episkopos, J.J. Li, H.S. Yee, D.M. Weiss, Prioritize code for testing to improve
code coverage of complex software, 2011. US Patent 7,886,272.

[142] K.K. Aggrawal, Y. Singh, A. Kaur, Code coverage based technique for prioritizing test
cases for regression testing, ACM SIGSOFT Softw. Eng. Notes 29 (5) (2004) 1–4.

[143] K.T. Cheng, A.S. Krishnakumar, Automatic functional test generation using the
extended finite state machine model, in: Proceedings of the 30th International Design
Automation Conference, ACM, 1993, pp. 86–91.

40 Yiling Lou et al.

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0625
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0625
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0630
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0630
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0635
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0635
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0635
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0640
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0640
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0640
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0645
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0645
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0645
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0650
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0650
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0650
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0655
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0655
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0660
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0660
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0665
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0665
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0665
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0670
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0670
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0670
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0675
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0675
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0680
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0680
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0680
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0685
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0685
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0685
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0685
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0690
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0690
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0690
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0695
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0695
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0695
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0700
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0700
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0700
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0705
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0705
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0710
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0710
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0715
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0715
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0720
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0720
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0720


[144] J. Dick, A. Faivre, Automating the generation and sequencing of test cases frommodel-
based specifications, in: FME’93: Industrial-Strength Formal Methods, Springer, 1993,
pp. 268–284.

[145] B. Korel, L.H. Tahat, B. Vaysburg,Model based regression test reduction using depen-
dence analysis, in: Proceedings. International Conference on Software Maintenance,
2002, IEEE, 2002, pp. 214–223.

[146] B. Korel, G. Koutsogiannakis, L.H. Tahat, Application of system models in regression
test suite prioritization, in: IEEE International Conference on Software Maintenance,
IEEE, 2008, pp. 247–256.

[147] B. Korel, L.H. Tahat, M. Harman, Test prioritization using system models, in: IEEE
International Conference on Software Maintenance, IEEE, 2005, pp. 559–568.

[148] S.W. Thomas, H. Hemmati, A.E. Hassan, D. Blostein, Static test case prioritization
using topic models, Empir. Softw. Eng. 19 (1) (2014) 182–212.

[149] L. Tahat, B. Korel, M. Harman, H. Ural, Regression test suite prioritization using
system models, Software Testing, Verification and Reliability 22 (7) (2012) 481–506.

[150] C.R. Panigrahi, R. Mall, Model-based regression test case prioritization, ACM
SIGSOFT Softw. Eng. Notes 35 (6) (2010) 1–7.

[151] Y.T. Yu, M.F. Lau, Fault-based test suite prioritization for specification-based testing,
Inf. Softw. Technol. 54 (2) (2012) 179–202.

[152] R. Just, G.M. Kapfhammer, F. Schweiggert, Using non-redundant mutation operators
and test suite prioritization to achieve efficient and scalable mutation analysis,
in: International Symposium on Software Reliability Engineering, IEEE, 2012,
pp. 11–20.

[153] S.A.S.A. Mary, R. Krishnamoorthi, Time-aware and weighted fault severity based
metrics for test case prioritization, Int. J. Softw. Eng. Knowl. Eng. 21 (1) (2011)
129–142.

[154] S. Kim, J. Baik, An effective fault aware test case prioritization by incorporating
a fault localization technique, in: Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement,
ACM, 2010, p. 5.

[155] C. Simons, E.C. Paraiso, Regression test cases prioritization using failure pursuit sam-
pling, in: 2010 10th International Conference on Intelligent Systems Design and
Applications, IEEE, 2010, pp. 923–928.

[156] H. Do, G. Rothermel, On the use of mutation faults in empirical assessments of test
case prioritization techniques, IEEE Trans. Softw. Eng. 32 (9) (2006) 733–752.

[157] S. Elbaum, A.G. Malishevsky, G. Rothermel, Test case prioritization: a family of
empirical studies, IEEE Trans. Softw. Eng. 28 (2) (2002) 159–182.

[158] J.C. Munson, S.G. Elbaum, Code churn: a measure for estimating the impact of code
change, in: Proceedings. International Conference on Software Maintenance, 1998,
IEEE, 1998, pp. 24–31.

[159] A. Nikora, J. Munson, Software evolution and the fault process, 1998. Tech. rep.
[160] I.H. Bernstein, Applied Multivariate Analysis, Springer Science & Business Media,

2012.
[161] Y. Ledru, A. Petrenko, S. Boroday, Using string distances for test case prioritisation,

in: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, IEEE Computer Society, 2009, pp. 510–514.

[162] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, B. Xie, Test case prior-
itization for compilers: a text-vector based approach, in: 2016 IEEE International Con-
ference on Software Testing, Verification and Validation, IEEE, 2016, pp. 266–277.

[163] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, B. Xie, An empirical
comparison of compiler testing techniques, in: Proceedings of the 38th International
Conference on Software Engineering, ACM, 2016, pp. 180–190.

41A Survey on Regression Test-Case Prioritization

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0725
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0725
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0725
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0730
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0730
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0730
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0735
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0735
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0735
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0740
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0740
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0745
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0745
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0750
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0750
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0755
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0755
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0760
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0760
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0765
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0765
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0765
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0765
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0770
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0770
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0770
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0775
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0775
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0775
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0775
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0780
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0780
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0780
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0785
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0785
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0790
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0790
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0795
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0795
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0795
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0800
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0805
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0805
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0810
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0810
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0810
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0815
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0815
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0815
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0820
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0820
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0820


[164] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, B. Xie, Learning to prioritize test pro-
grams for compiler testing, in: Proceedings of the 39th International Conference on
Software Engineering, IEEE Press, 2017, pp. 700–711.

[165] B. Jiang, W.K. Chan, Input-based adaptive randomized test case prioritization: a local
beam search approach, J. Syst. Softw. 105 (2015) 91–106.

[166] D. Garg, A. Datta, Test case prioritization due to database changes in web applications,
in: 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation, IEEE, 2012, pp. 726–730.

[167] C.D. Nguyen, A. Marchetto, P. Tonella, Change sensitivity based prioritization for
audit testing of webservice compositions, in: 2011 IEEE Fourth International Confer-
ence on Software Testing, Verification and Validation Workshops, IEEE, 2011,
pp. 357–365.

[168] R.A. Haraty, N. Mansour, L. Moukahal, I. Khalil, Regression test cases prioritization
using clustering and code change relevance, Int. J. Softw. Eng. Knowl. Eng. 26 (5)
(2016) 733–768.

[169] E.L.G. Alves, P.D.L. Machado, T. Massoni, M. Kim, Prioritizing test cases for early
detection of refactoring faults, Softw. Test. Verification Reliab. 26 (5) (2016) 402–426.

[170] S. Panda, D. Munjal, D.P. Mohapatra, A slice-based change impact analysis for regres-
sion test case prioritization of object-oriented programs, Adv. Soft. Eng. 2016 (2016) 1.

[171] C. Hettiarachchi, H. Do, B. Choi, Risk-based test case prioritization using a fuzzy
expert system, Inf. Softw. Technol. 69 (2016) 1–15.

[172] H. Srikanth, M. Cashman, M.B. Cohen, Test case prioritization of build acceptance
tests for an enterprise cloud application: an industrial case study, J. Syst. Softw.
119 (2016) 122–135.

[173] M.J. Arafeen, H. Do, Test case prioritization using requirements-based clustering,
in: 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation, IEEE, 2013, pp. 312–321.

[174] L. Zhang, D. Hao, L. Zhang, G. Rothermel, H. Mei, Bridging the gap between the
total and additional test-case prioritization strategies, in: Proceedings of the 2013 Inter-
national Conference on Software Engineering, IEEE Press, 2013, pp. 192–201.

[175] D. Hao, L. Zhang, L. Zhang, G. Rothermel, H. Mei, A unified test case prioritization
approach, ACM Trans. Softw. Eng. Methodol. 24 (2) (2014) 10.

[176] S. Lin, Computer solutions of the traveling salesman problem, Bell Syst. Tech. J.
44 (10) (1965) 2245–2269.

[177] B. Jiang, Z. Zhang, W.K. Chan, T.H. Tse, Adaptive random test case prioritization,
in: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, IEEE Computer Society, 2009, pp. 233–244.

[178] T.Y. Chen, F.-C. Kuo, R.G. Merkel, T.H. Tse, Adaptive random testing: the art of
test case diversity, J. Syst. Softw. 83 (1) (2010) 60–66.

[179] T.Y. Chen, H. Leung, I.K. Mak, Adaptive random testing, in: ASIAN, vol. 4,
Springer, 2004, pp. 320–329.

[180] M.G. Epitropakis, S. Yoo, M. Harman, E.K. Burke, Empirical evaluation of pareto
efficient multi-objective regression test case prioritisation, in: Proceedings of the 2015
International Symposium on Software Testing and Analysis, ACM, 2015, pp. 234–245.

[181] Z. Li, Y. Bian, R. Zhao, J. Cheng, A fine-grained parallel multi-objective test case
prioritization on GPU, in: International Symposium on Search Based Software Engi-
neering, Springer, 2013, pp. 111–125.

[182] D. Hao, L. Zhang, L. Zang, Y.Wang, X.Wu, T. Xie, To be optimal or not in test-case
prioritization, IEEE Trans. Softw. Eng. 42 (5) (2016) 490–505.

[183] A. Singhal, Modern information retrieval: a brief overview, IEEE Data Eng. Bull.
24 (4) (2001) 35–43.

42 Yiling Lou et al.

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0825
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0825
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0825
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0830
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0830
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0835
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0835
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0835
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0840
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0840
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0840
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0840
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0845
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0845
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0845
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0850
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0850
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0855
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0855
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0860
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0860
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0865
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0865
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0865
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0870
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0870
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0870
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0875
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0875
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0875
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0880
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0880
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0885
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0885
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0890
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0890
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0890
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0895
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0895
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0900
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0900
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0905
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0905
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0905
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0910
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0910
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0910
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0915
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0915
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0920
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0920


[184] C.D. Nguyen, A. Marchetto, P. Tonella, Test case prioritization for audit testing of
evolving web services using information retrieval techniques, in: 2011 IEEE Interna-
tional Conference on Web Services, IEEE, 2011, pp. 636–643.

[185] J.-H. Kwon, I.-Y. Ko, G. Rothermel, M. Staats, Test case prioritization based on
information retrieval concepts, in: 2014 21st Asia-Pacific Software Engineering Con-
ference (APSEC), vol. 1, IEEE, 2014, pp. 19–26.

[186] R.K. Saha, L. Zhang, S. Khurshid, D.E. Perry, An information retrieval approach for
regression test prioritization based on program changes, in: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, IEEE, 2015,
pp. 268–279.

[187] J. Lv, B. Yin, K.-Y. Cai, On the gain of measuring test case prioritization,
in: Computer Software and Applications Conference, IEEE, 2013, pp. 627–632.

[188] K.R. Walcott, M.L. Soffa, G.M. Kapfhammer, R.S. Roos, Time-aware test suite pri-
oritization, in: Proceedings of the 2006 International Symposium on Software Testing
and Analysis, ACM, 2006, pp. 1–12.

[189] X. Qu, M.B. Cohen, K.M. Woolf, Combinatorial interaction regression testing: a
study of test case generation and prioritization, in: IEEE International Conference
on Software Maintenance, IEEE, 2007, pp. 255–264.

[190] Z. Wang, L. Chen, Improved metrics for non-classic test prioritization problems,
in: International Conference on Software Engineering and Knowledge Engineering,
2015, pp. 562–566.

[191] H. Do, G. Rothermel, An empirical study of regression testing techniques incorporat-
ing context and lifetime factors and improved cost-benefit models, in: ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
2006, pp. 141–151.

[192] H. Do, G. Rothermel, Using sensitivity analysis to create simplified economic models
for regression testing, in: International Symposium on Software Testing and Analysis,
2008, pp. 51–62.

[193] J.-M. Kim, A. Porter, A history-based test prioritization technique for regression test-
ing in resource constrained environments, in: Proceedings of the 24th International
Conference on Software Engineering, ACM, 2002, pp. 119–129.

[194] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, J. Regehr, Taming
compiler fuzzers, in: ACM SIGPLANConference on Programming Language Design
and Implementation, vol. 48, 2013, pp. 197–208.

[195] S. Alspaugh, K.R. Walcott, M. Belanich, G.M. Kapfhammer, M.L. Soffa, Efficient
time-aware prioritization with knapsack solvers, in: WEASELTech, 2007, pp. 13–18.

[196] H.P. Williams, Model Building in Mathematical Programming, Wiley, 1999.
[197] B. Suri, S. Singhal, Analyzing test case selection & prioritization using ACO, ACM

SIGSOFT Softw. Eng. Notes 36 (6) (2011) 1–5.
[198] H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, The effects of time constraints on test

case prioritization: a series of controlled experiments, IEEE Trans. Softw. Eng. 36 (5)
(2010) 593–617.

[199] D. You, Z. Chen, B. Xu, B. Luo, C. Zhang, An empirical study on the effectiveness
of time-aware test case prioritization techniques, in: Proceedings of the 2011 ACM
Symposium on Applied Computing, ACM, 2011, pp. 1451–1456.

[200] H. Park, H. Ryu, J. Baik, Historical value-based approach for cost-cognizant test case
prioritization to improve the effectiveness of regression testing, in: IEEE International
Conference on Secure Software Integration and Reliability Improvement, 2008,
pp. 39–46.

[201] A.G. Malishevsky, J.R. Ruthruff, G. Rothermel, S. Elbaum, Cost-cognizant test case
prioritization, 2006. Technical Report.

43A Survey on Regression Test-Case Prioritization

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0925
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0925
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0925
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0930
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0930
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0930
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0935
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0935
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0935
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0935
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0940
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0940
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0945
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0945
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0945
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0950
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0950
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0950
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0955
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0955
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0955
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0960
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0960
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0960
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0960
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0965
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0965
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0965
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0970
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0970
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0970
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0975
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0975
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0975
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0980
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0980
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0985
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0990
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0990
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0995
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0995
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf0995
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1000
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1000
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1000
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1005
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1005
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1005
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1005
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1010
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1010


[202] S. Eghbali, L. Tahvildari, Test case prioritization using lexicographical ordering, IEEE
Trans. Softw. Eng. 42 (12) (2016) 1178–1195.

[203] H. Do, G. Rothermel, A. Kinneer, Prioritizing JUnit test cases: an empirical assess-
ment and cost-benefits analysis, Empir. Softw. Eng. 11 (1) (2006) 33–70.

[204] H. Do, G. Rothermel, A controlled experiment assessing test case prioritization
techniques via mutation faults, in: IEEE International Conference on Software
Maintenance, IEEE, 2005, pp. 411–420.

[205] M. Gligoric, L. Eloussi, D. Marinov, Practical regression test selection with dynamic
file dependencies, in: International Symposium on Software Testing and Analysis,
2015, pp. 211–222.

[206] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, G. Rothermel, A static approach to
prioritizing junit test cases, IEEE Trans. Softw. Eng. 38 (6) (2012) 1258–1275.

[207] R.C. Bryce, A.M. Memon, Test suite prioritization by interaction coverage,
in: Workshop on Domain Specific Approaches to Software Test Automation: In
Conjunction With the 6th ESEC/FSE Joint Meeting, ACM, 2007, pp. 1–7.

[208] X. Qu, M.B. Cohen, G. Rothermel, Configuration-aware regression testing: an
empirical study of sampling and prioritization, in: Proceedings of the 2008 Interna-
tional Symposium on Software Testing and Analysis, ACM, 2008, pp. 75–86.

[209] X. Qu, M.B. Cohen, A study in prioritization for higher strength combinatorial test-
ing, in: 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation Workshops, IEEE, 2013, pp. 285–294.

[210] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, Y. Le Traon, Bypassing
the combinatorial explosion: using similarity to generate and prioritize t-wise test
configurations for software product lines, IEEE Trans. Softw. Eng. 40 (7) (2014)
650–670.

[211] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, H. Mei, Search-based
inference of polynomial metamorphic relations, in: Proceedings of the 29th ACM/
IEEE International Conference on Automated Software Engineering, ASE ’14,
2014, pp. 701–712.

[212] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, B. Xie, H. Mei, Supporting oracle
construction via static analysis, in: 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE, 2016, pp. 178–189.

[213] J. Zhang, Z.Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, L. Zhang, Predictive muta-
tion testing, in: Proceedings of the 25th International Symposium on Software Testing
and Analysis, ACM, 2016, pp. 342–353.

[214] MapDB, http://www.mapdb.org/, n.d.

44 Yiling Lou et al.

http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1015
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1015
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1020
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1020
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1025
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1025
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1025
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1030
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1030
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1030
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1035
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1035
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1040
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1040
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1040
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1045
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1045
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1045
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1050
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1050
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1050
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1055
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1055
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1055
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1055
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1060
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1060
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1060
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1060
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1065
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1065
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1065
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1070
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1070
http://refhub.elsevier.com/S0065-2458(18)30061-5/rf1070
http://www.mapdb.org/
http://www.mapdb.org/


ABOUT THE AUTHORS
Yiling Lou received the B.S. degree in com-

puter science and technology from Peking

University. She is currently working toward

the Ph.D. degree under the supervision of

Professor Lu Zhang and Professor Dan Has

at Peking University. Her research interests

include software testing and debugging.

Junjie Chen is a Ph.D. candidate at the

School of Electronics Engineering and

Computer Science, Peking University. He

received his B.S. degree from Beihang

University. His research interests are software

testing and debugging, mainly focusing on

compiler testing, regression testing, auto-

mated debugging.

45A Survey on Regression Test-Case Prioritization



Lingming Zhang is an assistant professor in

the Computer Science Department at the

University of Texas at Dallas. He obtained

his Ph.D. degree from the Department of

Electrical and Computer Engineering in

the University of Texas at Austin in May

2014. He received his M.S. degree and

B.S. degree in Computer Science from

Peking University (2010) and Nanjing Uni-

versity (2007), respectively. His research

interests lie broadly in software engineering

and programming languages, including auto-

mated software analysis, testing, debugging, and verification, as well as soft-

ware evolution and mobile computing. He has authored over 40 papers in

premier software engineering or programming language conferences and

transactions. He has also served on the program/organization committee

or artifact evaluation committee for various international conferences

(including ICSE, ISSTA, FSE, ASE, ICST, ICSM, and OOPSLA). He

has won the Google Faculty Research Award, his research is also being

supported by NSF, Huawei, NVIDIA, and Samsung. More information

available at: http://www.utdallas.edu/�lxz144130/.

Dan Hao received the B.S. degree in com-

puter science from the Harbin Institute of

Technology in 2002 and the Ph.D. degree

in computer science from Peking University

in 2008. She is an associate professor at the

School of Electronics Engineering and Com-

puter Science, Peking University, P.R.

China. Her current research interests include

software testing and debugging.

46 Yiling Lou et al.

http://www.utdallas.edu/~lxz144130/
http://www.utdallas.edu/~lxz144130/

	A Survey on Regression Test-Case Prioritization
	Introduction
	Framework
	Criterion
	Structural Criterion
	Model-Level Criterion
	Fault-Related Criterion
	Test Input-Based Criterion
	Change Impact-Based Criterion
	Other Criteria
	Risk
	Similarity
	Service History
	Requirement


	Prioritization Algorithm
	Greedy Algorithm
	Search-Based Algorithm
	Integrate-Linear-Programming-Based Algorithm
	Information-Retrieval-Based Algorithm
	Machine-Learning-Based Algorithm

	Measurement
	APFD
	AFPDC
	APXC
	WGFD
	HMFD
	NAPFD and RAPFD

	Constraint
	Time Constraint
	Fault Severity
	Other Constraints

	Application Scenario
	General Test-Case Prioritization
	Version-Specific Test-Case Prioritization

	Empirical Study
	Studies on Traditional Dynamic Prioritization
	Comparison With Traditional Dynamic Techniques
	Dynamic vs Static
	Block-Box vs White-Box


	Some Discussions
	Existing Issues
	Criteria
	Measurement
	Empirical Studies

	Other Challenging Problems
	Intermediate/Ultimate Goal
	Practical Values


	Conclusion
	Acknowledgments
	References




