
An Empirical Study on Challenges of Application Development
in Serverless Computing

Jinfeng Wen∗
Key Lab of High-Confidence Software
Technology, MoE (Peking University)

Beijing, China
jinfeng.wen@stu.pku.edu.cn

Zhenpeng Chen∗
Key Lab of High-Confidence Software
Technology, MoE (Peking University)

Beijing, China
czp@pku.edu.cn

Yi Liu
Key Lab of High-Confidence Software
Technology, MoE (Peking University)

Beijing, China
liuyi14@pku.edu.cn

Yiling Lou
Key Lab of High-Confidence Software
Technology, MoE (Peking University)

Beijing, China
yiling.lou@pku.edu.cn

Yun Ma†
Institute for Artificial Intelligence,

Peking University
Beijing, China

mayun@pku.edu.cn

Gang Huang
Key Lab of High-Confidence Software
Technology, MoE (Peking University)

Beijing, China
hg@pku.edu.cn

Xin Jin
Key Lab of High-Confidence Software
Technology, MoE (Peking University)

Beijing, China
xinjinpku@pku.edu.cn

Xuanzhe Liu†
Key Lab of High-Confidence Software
Technology, MoE (Peking University)

Beijing, China
xzl@pku.edu.cn

ABSTRACT
Serverless computing is an emerging paradigm for cloud computing,
gaining traction in a wide range of applications such as video pro-
cessing andmachine learning. This new paradigm allows developers
to focus on the development of the logic of serverless computing
based applications (abbreviated as serverless-based applications) in
the granularity of function, thereby freeing developers from te-
dious and error-prone infrastructure management. Meanwhile, it
also introduces new challenges on the design, implementation, and
deployment of serverless-based applications, and current serverless
computing platforms are far away from satisfactory. However, to
the best of our knowledge, these challenges have not been well
studied. To fill this knowledge gap, this paper presents the first com-
prehensive study on understanding the challenges in developing
serverless-based applications from the developers’ perspective. We
mine and analyze 22,731 relevant questions from Stack Overflow
(a popular Q&A website for developers), and show the increasing
popularity trend and the high difficulty level of serverless com-
puting for developers. Through manual inspection of 619 sampled
questions, we construct a taxonomy of challenges that developers
encounter, and report a series of findings and actionable implica-
tions. Stakeholders including application developers, researchers,
∗Jinfeng Wen and Zhenpeng Chen made equal contributions to this work.
†Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468558

and cloud providers can leverage these findings and implications
to better understand and further explore the serverless computing
paradigm.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; • Computer systems organization → Cloud com-
puting; • General and reference→ Empirical studies.

KEYWORDS
Serverless Computing, Application Development, Empirical Study,
Stack Overflow
ACM Reference Format:
Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang,
Xin Jin, and Xuanzhe Liu. 2021. An Empirical Study on Challenges of
Application Development in Serverless Computing. In Proceedings of the
29th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’21), August
23–28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3468264.3468558

1 INTRODUCTION
Serverless computing is an emerging paradigm for cloud comput-
ing, gaining traction in a wide range of domains including video
processing [79, 90], scientific computing [91, 104], machine learn-
ing [83, 89], big data processing [108], Internet of things [97], etc.
It has been estimated that the market of serverless computing is
expected to grow from USD 1.88 billion in 2016 to USD 7.72 billion
by 2021 [64]. Moreover, it is predicted that 50% of global enterprises
will employ serverless computing by 2025 [63].

The increasing popularity of serverless computing can be attrib-
uted to its benign characteristics. Specifically, it allows developers
to focus on the application logic, where functions are composed

416

https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1145/3468264.3468558

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin Jin, and Xuanzhe Liu

and packaged as the format of services (i.e., Function-as-a-Service
(FaaS) [77, 92, 96, 105, 106]), thereby freeing developers from tedious
and error-prone infrastructure management like load-balancing,
auto-scaling, fault tolerance, operational monitoring, etc. Moreover,
it reduces the cost as developers pay for only the actual function
executions. What is more, serverless computing also brings great
benefits for cloud providers as it allows them to better utilize re-
sources [92]. Therefore, major cloud providers have rolled out their
serverless platforms, such as AWS Lambda [61], Microsoft Azure
Functions [62], and Google Cloud Functions [65]. There are also
increasing open-source implementations available for serverless
computing like OpenWhisk [70] and OpenFaaS [69].

Given the popularity of serverless computing, there is a lot
of room that can be explored by researchers and developers. Re-
searchers have conducted a series of studies [96, 103, 107, 110]
to compare the features, architectures, and performance proper-
ties, among different serverless platforms, in order to understand
their differences and derive guidelines for choosing the most suit-
able platform for a given application scenario. Furthermore, since
current serverless platforms have several shortcomings such as
high startup time and limited communication bandwidth, recent
work [77, 90, 99] has proposed new architectures and solutions to al-
leviate or eliminate them. Developers have also paid attention to the
development of serverless computing based applications (in short
of serverless-based applications). The specific programming chal-
lenges that developers encounter when developing serverless-based
applications, e.g., the design, implementation, and deployment of
serverless-based applications, configurations of related resources
and environments, networking, etc., are frequently asked on devel-
opers’ Q&A forums [1–7]. However, to the best of our knowledge,
these challenges have not been well studied.

To bridge the knowledge gap, we perform the first comprehen-
sive study to identify challenges in developing serverless-based
applications from the developers’ perspectives. Such a study is
timely and valuable since it can aid developers in avoiding common
pitfalls and make researchers and cloud providers better positioned
to help developers develop serverless-based applications in a more
targeted way. To this end, we mine and analyze the relevant ques-
tions from a variety of developers on Stack Overflow (SO), which
is a popular Q&A forum for developers to seek advice from peers
when they have programming issues [87]. Specifically, we collect
22,731 SO questions related to serverless computing to answer the
following three research questions.

RQ1 (Popularity trend):What is the popularity trend of server-
less computing among developers? Via quantitative analysis, we find
that serverless computing is gaining increasing attention on Stack
Overflow, demonstrating its rising popularity and the timeliness
and the urgency of our study.

RQ2 (Difficulty level): How difficult is serverless computing for
developers? To answer this question, we explore the difficulty of
developers answering questions related to serverless computing.
Results show that these questions are more difficult to answer than
those related to other challenging topics in software engineering,
whichmotivates us to further identify the specific challenges behind
serverless computing.

RQ3 (Taxonomy of challenges): What specific challenges do
developers encounter when developing serverless-based applications?

To identify the challenges, we randomly sample 619 relevant SO
questions for manual examination. For each question, we qualita-
tively extract the challenges behind it. Finally, we construct a taxon-
omy consisting of 36 categories, linked to challenges in developing
serverless-based applications. It indicates that developers face a
wide spectrum of challenges in serverless computing, covering con-
ceptual questions, version control, programming language support,
database connection, resource configuration, security, etc. Based
on the taxonomy, we summarize a series of findings and actionable
implications for developers, researchers, and cloud providers.

In addition, we offer the scripts and the dataset used in this
study1 as an additional contribution to the research community for
other researchers to replicate and build upon.

2 BACKGROUND
Cloud computing has become a widely adopted paradigm for the
delivery of computing services via the Internet. It has various forms,
including Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), Software as a Service (SaaS), etc. They are built on top of
each other and form a “cloud computing stack”, on which each
layer gradually relieves the tedious and error-prone infrastructure
management, e.g., load balancing and auto-scaling. Serverless com-
puting currently is the ultimate paradigm of cloud computing. In
this paradigm, it introduces opportunities for software development.
Specifically, developers can focus on their own application logic
and save cost without the need for cloud computing expertise. The
function becomes the basic unit in serverless computing. Develop-
ers write only the function with a specific event trigger (e.g., adding
a file into the cloud storage), package and upload their code, and
specify the required environment (e.g., language runtime, memory).
Serverless platforms provide sandboxing environments (virtual
machines or containers) to host functions, and automatically deal
with scalability, fault tolerance, and other runtime issues. Different
from traditional cloud computing, where developers often need to
continuously manage and run servers and pay for them, such a
programming paradigm abstracts away most operational tasks and
simplifies the application development on the cloud. Meanwhile,
its storage and computation scale separately, and are provisioned
and priced independently.

However, this new programming paradigm changes the way
of traditional software development and may introduce new chal-
lenges for developers. First, inherent limits of serverless computing
prevent the migration from serverful applications [83, 88, 92]. For
example, serverless computing lacks an efficient communication
channel among functions, and has restricted resources (e.g., short
execution time, confined memory size). Second, existing server-
less platforms lack a unified programming framework and rich
support tools, making it more difficult to develop serverless-based
applications [92, 94]. For example, due to the lack of support tools,
debugging and testing serverless-based applications are more chal-
lenging than serverful applications for developers. Last but not least,
developers have to follow the programming model of serverless
computing, with special attention to the design, implementation
and deployment of serverless-based applications, configurations
of resources and environments, processing of events, etc. [88, 94].

1https://github.com/WenJinfeng/FSE21-Dataset_Script

417

https://github.com/WenJinfeng/FSE21-Dataset_Script

An Empirical Study on Challenges of Application Development in Serverless Computing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

These challenges may affect the developers’ practice, thereby re-
ducing their enthusiasm for application development on the cloud.
Thus, it is essential to understand the challenges in developing
serverless-based applications, which can improve the development
efficiency of developers, give actionable implications to researchers,
and boost the usefulness of serverless platforms.

We briefly introduce the development process of serverless-based
applications. Generally, to help developers develop better, server-
less platforms provide local development tools, e.g., Command-Line
Interfaces (CLIs), Software Development Kits (SDKs), etc. More-
over, some third-party tools like Serverless Framework [72], Local
Stack [67] also emerge to allow developers to build and deploy their
applications. Leveraging these development tools, the development
process can be divided into five stages as shown in Figure 1.

N
ew

 A
pplications

Legacy A
pplications Application

Deployment

Application
Design

Environment
Configuration

Low-Code
Development

Application
Implementation

Non-Functional
Properties

Figure 1: The development process of serverless-based appli-
cations.

Developers can have two cases for application development, i.e.,
(i) they develop new serverless-based applications from scratch,
and (ii) they migrate legacy applications to serverless platforms
to simplify the development or improve performance. For the first
case, developers care about how to design the application func-
tionality. For the second case, developers mainly take into account
the migration design issues of existing legacy applications. They
are called Application Design. After application design, develop-
ers configure the environment related to serverless computing to
develop functions (called Environment Configuration). What is
more, if functions require additional resources like compute and
storage, developers also need to configure these resources and the
corresponding permissions for functions leveraging the cloud con-
sole or a specific template. This configuration way can be viewed as
Low-CodeDevelopment [68], which is performed through graph-
ical user interfaces or configuration operation instead of traditional
hand-coded programming. After accomplishing the required con-
figurations, developers can focus on the code implementation of
applications (called Application Implementation). Developers
confirm the correctness of applications, then deploy applications
to run on serverless platforms through the packaging way (called
Application Deployment). Except for the above five stages, de-
velopers also need to consider Non-Functional Properties, e.g.,
performance, security and version control. These properties can be
involved in one or more of the development stages. For instance,
performance or security is considered in the low-code development
and application implementation. Thus, non-functional properties
are vital for the development of serverless-based applications.

3 METHODOLOGY
To understand the challenges that developers encounter when de-
veloping serverless-based applications, we follow previous stud-
ies [76, 78, 80, 95, 100, 109, 111] to collect and analyze the relevant
questions posted on SO, where developers often seek technical as-
sistance on unsolvable issues. In Figure 2, we show an overview of
the methodology of our study.

Step1:
Download
SO dataset

Step 2:
Extract relevant

questions

Step 3: Determine popularity trend (RQ1)

Step 4: Determine difficulty level (RQ2)

Step 5: Construct taxonomy of challenges (RQ3)

Figure 2: An overview of the methodology.

Step 1: Download SO dataset. To collect questions related to
serverless computing, we first download the entire SO dataset 𝑆𝑎𝑙𝑙
from the official Stack Exchange Data Dump [73] on December 9,
2020. The SO dataset includes 20,511,138 SO questions from July 31,
2008, to December 8, 2020. For each question, the metadata includes
its identifier, creation date, body, title, answers, one to five tags
that represent its topics, etc. In addition, the developer who posts
a question can mark an answer as an accepted answer to indicate
that it works for the question.
Step 2: Extract relevant questions. To collect serverless comput-
ing related questions from 𝑆𝑎𝑙𝑙 , we follow previous work [80, 84, 95]
to first construct a set of tags related to serverless computing and
then extract questions tagged with at least one of these tags. The
detailed procedures are as follows.

First, we use 𝑇𝑖𝑛𝑖 = {“serverless”, “faas”} as our initial tag set,
since this study focuses on serverless computing (also known as
“FaaS” [77, 92, 96, 105, 106]).

Second, we extend the initial tag set by extracting all the tags of
questions whose tags match at least one tag in 𝑇𝑖𝑛𝑖 (denote these
questions as 𝑆𝑐𝑎𝑛𝑑), and refine the extended tag set (denoted as
𝑇𝑐𝑎𝑛𝑑) by keeping tags that are significantly relevant to serverless
computing and excluding others. Specifically, we follow previous
work [80, 109] to use two heuristics 𝜇 and 𝑣 to measure the signifi-
cance and relevance of a tag 𝑡 in 𝑇𝑐𝑎𝑛𝑑 .

(𝑠𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑐𝑒) 𝜇 =
𝑜 𝑓 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑡𝑎𝑔 𝑡 𝑖𝑛 𝑆𝑐𝑎𝑛𝑑

𝑜 𝑓 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑆𝑐𝑎𝑛𝑑
(1)

(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒) 𝑣 =
𝑜 𝑓 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑡𝑎𝑔 𝑡 𝑖𝑛 𝑆𝑐𝑎𝑛𝑑

𝑜 𝑓 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑡𝑎𝑔 𝑡 𝑖𝑛 𝑆𝑎𝑙𝑙
(2)

A tag 𝑡 is significantly relevant to serverless computing if its 𝜇
and 𝑣 are higher than the specific thresholds. To avoid omitting
relevant tags, we employ the lowest thresholds used by previous
studies [80, 95], and only the tags whose 𝜇 is higher than 0.005 and
whose 𝑣 is higher than 0.05 are kept in 𝑇𝑐𝑎𝑛𝑑 .

Finally, the first two authors jointly examine each candidate tag
in 𝑇𝑐𝑎𝑛𝑑 to filter out tags that are not related to serverless comput-
ing. As a result, the final tag set 𝑇𝑓 𝑖𝑛𝑎𝑙 consists of 13 tags, includ-
ing “serverless”, “faas”, “serverless-framework”, “aws-serverless”,

418

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin Jin, and Xuanzhe Liu

“openwhisk”, “aws-lambda”, “aws-sam”, “aws-sam-cli”, “serverless-
architecture”, “serverless-offline”, “vercel”, “serverless-plugins” and
“localstack”. We extract 22,731 questions tagged with at least one of
the 13 tags as the relevant questions (denoted as 𝑆𝑟𝑒𝑙).
Step 3: Determine popularity trend (RQ1). To analyze the popu-
larity trend of the topic of serverless computing, we follow previous
work [76, 78, 80, 81, 84, 100, 109, 111] to calculate the number of
questions and users related to serverless computing per year. Since
the concept of serverless computing has attracted widespread atten-
tion throughAWS Lambda from 2015 [92], themetrics are calculated
based on 𝑆𝑟𝑒𝑙 for each of the past six years, i.e., from 2015 to 2020.
Section 4 answers RQ1.
Step 4: Determine difficulty level (RQ2). To measure the diffi-
culty level of answering questions related to serverless computing,
we follow previous work [75, 76, 78, 80, 84, 100, 109, 111] to adopt
twometrics, including the percentage of questions with no accepted
answer (“%no acc.”) and the median response time needed to re-
ceive an accepted answer (“resp time”). We calculate the two metrics
based on 𝑆𝑟𝑒𝑙 . In addition, we calculate the average difficulty level
of SO questions (i.e., %no acc. and resp time for 𝑆𝑎𝑙𝑙) as the baseline.
For the first metric, we use the proportion test [98] to examine the
statistical significance of comparison. Proportion test is used for
testing the null hypothesis that the proportions in several groups
are the same [71], and thus appropriate for the comparison in %no
acc. [84]. For the second metric, we calculate the median value of
response time to receive an accepted answer for both serverless-
related questions (i.e., 𝑆𝑟𝑒𝑙) and SO questions (i.e., 𝑆𝑎𝑙𝑙). Specifically,
for each question, we extract the creation timestamps of this ques-
tion and the corresponding accepted answer to calculate the time
span between them as the response time. Section 5 answers RQ2.
Step 5: Construct taxonomy of challenges (RQ3). To analyze
specific challenges that developers encounter and construct the
taxonomy of challenges, we follow previous studies [85, 95] to use
questions that have an accepted answer, ensuring that we consider
only questions with a confirmed solution. As a result, 8,751 ques-
tions in 𝑆𝑟𝑒𝑙 are kept. Due to the large sample size, manually labeling
all questions is time-consuming and infeasible. Following previous
work [74], we randomly select a statistically significant sample en-
suring a 99% confidence level ± 5% from 8,751 questions. As a result,
619 questions constitute the taxonomy dataset of our study, and
this dataset size is larger than the one in existing work [82, 85, 112]
that needs also manual analysis. Next, we illustrate the process of
constructing the taxonomy of challenges.

First, we randomly sample 70% of 619 questions to construct the
initial taxonomy of challenges. We adopt an open coding proce-
dure [102] to analyze the sampled questions, in order to inductively
create categories and subcategories of our taxonomy in a bottom-
up way. The first two authors, both of whom have two years of
cloud/serverless computing experience, jointly participate in the
taxonomy construction. They read the sampled questions over and
over again, in order to be acquainted with them. In this process,
all the elements of each question, including the title, body, code
snippets, comments, and even URLs contained in questioners and
answerers, are taken into account for careful inspection.

The detailed procedure of open coding is as follows. Questions
not related to serverless computing are labeled as False positives,

and thus not included in our taxonomy. Regarding the remaining
questions, the authors give short phrases to represent the challenges
that developers encounter. Specifically, some questions are raised
without any attempts, and they are mainly in the form of “how”, e.g.,
“How to use request module in node.js lambda” [8]. For such questions,
the authors often can clearly understand the challenges from the
question description. Additionally, some questions describe the
faults or unexpected results that developers are trying development
practices. For such questions, the authors identify their causes as
the challenges. For instance, when the developer posts an error
message about the implementation of asynchronous functions [5],
the authors find that the error is caused due tomixing asynchronous
statements through checking the question descriptions, comments,
and answers. Thus, the authors consider assigning asynchronous
processing to be the challenge behind this question.

Second, the authors continue to group similar short phrases
into categories and establish a hierarchical taxonomy of challenges.
Regarding the grouping process, the authors iterate repeatedly be-
tween categories and questions. If questions are related to multiple
categories, they are assigned to all related categories. In addition, if
the authors have conflicts in labeling questions, a third arbitrator
is introduced to discuss and resolve these conflicts. Particularly,
the third arbitrator has seven years of cloud computing experi-
ences. Through such a rigorous procedure, all questions come to
an agreement and the final label results (i.e., the initial taxonomy)
are confirmed by all the participants.

Finally, we perform reliability analysis and extended construc-
tion of the taxonomy of challenges. Based on the initial taxonomy,
the remaining 30% questions are independently labeled by the first
two authors to conduct reliability analysis. Each question is marked
with False positives or the leaf categories of our taxonomy. Ques-
tions that cannot be classified into the current taxonomy are placed
to a new category named Pending. We use Cohen’s Kappa (𝜅) [86] to
calculate the inter-rater agreement during the independent labeling.
The value of the inter-rater agreement is 0.836, which indicates
an almost perfect agreement [93] and reliable labeling procedure.
Existing conflicts are then discussed and resolved by the first two
authors and the third arbitrator. In addition, questions in Pending
category are also identified with the help of the third arbitrator,
and some new categories are added to our taxonomy. As a result,
five new leaf categories are added and all questions in Pending can
be assigned into our taxonomy.

To sum up, for the 619 sampled questions, 4 questions are marked
as False positives and 17 questions are assigned into two categories.
As a result, 632 samples are contained in the final taxonomy. Sec-
tion 6 answers RQ3.

4 RQ1: POPULARITY TREND
Figure 3 represents the popularity trend of serverless computing
in terms of the number of questions and users on SO. We find
that this topic has been gaining increasing attention since 2015,
demonstrating the timeliness and urgency of this study.

For the topic of serverless computing, questions and users in-
crease in a steady trend as shown in Figure 3. Since Amazon first

419

An Empirical Study on Challenges of Application Development in Serverless Computing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

rolled out AWS Lambda in November 20142, the concept of server-
less computing has drawn widespread attention. We observe that
both the number of questions and users related to serverless com-
puting in 2016 increased by more than 340% compared to those of
2015. In addition, we calculate the annual growth rate of the SO
dataset as the baseline. We find that the growth rate of SO ques-
tions and users from 2015 to 2020 ranges from 6% to 22%, while the
growth rate of questions and users related to serverless computing
ranges from 47% to 380%.

0

2000

4000

6000

8000

2015 2016 2017 2018 2019 2020

of questions/users

question user

Figure 3: The popularity trend of serverless computing.

Finding 1: The topic of serverless computing is gaining increas-
ing attention from developers, demonstrating the timeliness
and urgency of this study.

5 RQ2: DIFFICULTY LEVEL
Table 1 shows metrics %no acc. and resp time of serverless-related
questions and all SO questions. The values of %no acc. of serverless-
related questions and all SO questions are 61.5% and 48.3%, respec-
tively. The significance of this difference is ensured by the result
of the proportion test (𝜒2 = 1, 577, df = 1, 𝑝-value < 2.2e-16), indi-
cating that questions related to serverless computing have a larger
percentage of questions with no accepted answer. In addition, the
values of resp time of serverless-related questions and all SO ques-
tions are 190 and 35 minutes, respectively. It implies that questions
related to serverless computing need longer time to receive an
accepted answer.

Based on the table, we can find that it is more challenging to
answer questions related to serverless computing than other SE
topics. In particular, 61.5% of questions related to serverless comput-
ing have no accepted answers, which is remarkably more frequent
than other SE topics, such as Web development (i.e., 48.0% [78]),
concurrency (i.e., 43.8% [76]), and mobile (i.e., 55.0% [100]). In ad-
dition, it often takes non-trival time to respond questions related
to serverless computing (i.e., 190 min), which is substantially more
time-consuming than other SE topics, such as Web development
(i.e., 19 min [78]), concurrency(i.e., 42 min [76]), mobile (i.e., 55
min [100]). Since answers are often edited on SO, to make our
results more reliable, we also calculate the response time as the
time span between the creation time of a question and the last
2https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html

Table 1: Difficulty level Comparison.

SO Web concurrency mobile serverless
%no acc. 48.3% 48.0% 43.8% 55.0% 61.5%
resp time 35 min 19 min 42 min 55 min 190 min

editing time of its accepted answer. The obtained result is 242 min,
which is longer than our previous result (190 min). In summary,
answering questions related to serverless computing needs longer
time. Long answering time could sometimes be caused by lacking
experts [78]. However, the response time to receive an accepted
answer is still a well-adopted metric for difficulty, since lacking
experts indicates that a large proportion of developers have not
yet mastered serverless-related development skills, making these
questions difficult to answer. Overall, our results demonstrate the
necessity of identifying the challenges behind questions related to
serverless computing.

Finding 2: Questions related to serverless computing are more
challenging to answer than the average level of all SO questions
and other topics related to software development tasks, e.g.,
Web development, concurrency, and mobile.

6 RQ3: TAXONOMY OF CHALLENGES

Figure 4 illustrates the hierarchical taxonomy of challenges in de-
veloping serverless-based applications. Nodes are in descending
grey-level along with their depth in the hierarchy (e.g., leaf nodes
are in white). Each leaf node represents a leaf category and its non-
white parent node that consists of multiple categories is an inner
category. For example, Performance (G.6) is an inner category that
can be further divided into four leaf categories: Execution Latency
(G.6.1), Resource Utilization (G.6.2),Cold Startup (G.6.3), and Through-
put (G.6.4). The percentage for samples related to each category
is in the parentheses. In total, our taxonomy consists of 11 inner
categories and 36 leaf categories. We observe that when develop-
ing serverless-based applications, developers encounter problems
in a broad spectrum of aspects, which indicates the diversity of
challenges related to serverless computing. We next describe and
exemplify each category by groups, and report our findings and
implications for developers, researchers, and cloud providers.

Finding 3: The challenges that developers encounter have a
broad spectrum of 36 leaf categories ranging from Conceptual
Questions to Version Control, Programming Language Support
to Database Connection and Resource Configuration to Security.

6.1 General Questions (A)
General questions represent the challenges involving no specific
implementation details, which are often proposed by developers
when they are looking for primary knowledge related to serverless
computing. Our results show that 7.9% of challenges belong to
general questions. We then discuss several categories in detail as
follows.

420

https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin Jin, and Xuanzhe Liu

[A.1] Conceptional
Questions (5.5%)

[A.3] Cloud Service
Comparison (0.8%)

[A.2] Platform/Tool
Support (1.6%)

[B.1] Functionality
Design (10.9%)

[B.3] Programming
Language Support (0.8%)

[B.2] Application
Migration (4.6%)

[C.1] Tool
Installation

(2.1%)

[C.2] Tool Usage
(1.4%)

[C.3] Version
Compatibility (2.4%)

[D.1] Provider/Function
Configuration (11.1%)

[D.2] Resource
Configuration (5.4%)

[D.3] Custom
Configuration (3.2%)

[E.2] Package
Integration (10.9%)

[E.1] Functionality
Implementation (7.6%)

[E.3] Asynchronous
Processing (4.1%)

[F.3] Deployment
Tool Usage (1.9%)[F.1] Procedure (1.3%) [F.2] Packaging (1.3%)

[E.5] Debugging and
Testing (0.6%)

[E.4] Data
Processing (6.2%)

[E.6] Function
Invocation (6.0%)

[G.2] Monitoring (0.2%)[G.1] Networking
(3.2%)

[G.3] Version Control
(0.9)

[G.5] Concurrency
(1.4%)[G.4] Cost (0.9%) [G.6] Performance

(2.4%) [G.7] Security (1.4%)

[G.6.2] Resource
Utilization (0.3%)

[G.6.1] Execution
Latency (0.9%)

[G.6.3] Cold
Startup (0.9%)

[G.6.4] Throughput
(0.2%)

[E.2.2] Database
Connection (2.2%)

[E.2.1] Package
Import (3.2%)

[E.2.3] Method
Usage (5.5%)

[E.4.2] Format/Datatype
Setting (2.5%)

[E.4.1] Data
Parsing (3.2%)

[E.4.3] Syntax
Error (0.5%)

[E.6.2] Invocation
Parameter (2.8%)

[E.6.1] Invocation
Method (3.2%)

Challenges in Developing Serverless-based Applications (100%)

[A] General Questions (7.9%) [B] Application Design (16.3%) [C] Environment Configuration
(5.9%) [D] Low-code Development (19.6%)

[F] Application Deployment (4.4%)[E] Application Implementation
(35.4%)

[G]
Non-functional

Properties (10.4%)

Figure 4: Taxonomy of challenges in developing serverless-based applications.

Conceptional Questions (A.1) This category represents ques-
tions about basic concepts or background knowledge of serverless
computing, such as how AWS Lambda works [1] and the difference
between functions in idle state and not [9]. Answerers mainly han-
dle these questions by providing documentation-like information or
translate the jargon-heavy documentation into case-specific guid-
ance phrased in a developer-friendly way. In our taxonomy, 5.5% of
the total challenges appear in conceptional questions. It illustrates
that developers are eager to gain a comprehensive understanding
of concepts related to serverless computing.

Platform/Tool Support (A.2) Developers wonder whether a
certain serverless platform or development tool can satisfy their
specific requirements. Specifically, for serverless platforms, devel-
opers may have concerns about hard restrictions (e.g., memory [10])
or task types (e.g., machine learning [11]). For development tools
like Serverless Framework [72], developers often ask whether certain
features, e.g., user authentication [12], are integrated with them.

Cloud Service Comparison (A.3) Developers may have chal-
lenges in understanding and choosing cloud services with similar
functionality. For example, it is often confusing for developers to
choose an appropriate database service in their functions, since
there are often various database services, such as Amazon Dy-
namoDB [58] and RDS [59].

Finding 4: 7.9% of the total challenges occur before actual prac-
tices and are classified in General Questions. Among the three
categories, Conceptual Questions is the largest one, accounting
for 70.0% of challenges in General Questions.

Discussion and implication: Our results show that developers
encounter frequent challenges related to the basic concepts be-
fore actual practices. We further analyze the conceptual questions
and find that there are mainly three aspects of understanding, i.e.,
underlying working mechanism, proprietary terms, and platform-
specific restrictions. Developers need to spend non-negligible time
on learning the required knowledge, especially proprietary terms
and platform-specific restrictions, and think more about the work-
ing mechanism of serverless platforms. Questions of the underlying
working mechanism are asked frequently in the way of how it works.
Thus, cloud providers can supplement more organized documents
to help developers search them and alleviate concerns.

With the popularity of machine learning and deep learning,
more and more applications need to deal with data-intensive and
computation-intensive tasks. However, due to inherent restrictions
of serverless platforms (e.g., memory, storage, package size, and
execution time), both data-processing applications with a large data-
base and machine-learning applications with large libraries like
TensorFlow cannot be handled normally. Thus, developers have
to indirectly implement such serverless-based applications with
other strategies that may increase the development complexity.
Specifically, to avoid transmitting a large volume of data through
the network, developers need to use other storage services to save
query results [10]. They also need to pay attention to keep an effi-
cient database connection to avoid exceeding the execution time
limit. In addition, machine-learning applications may run for a long
time with high memory demands, whose cost will skyrocket. The
answerer suggests “you will be better off with something like EC2 and
ECS” [11]. Thus, such computation-intensive applications may be
more suitable to use the “traditional” IaaS paradigms such as virtual

421

An Empirical Study on Challenges of Application Development in Serverless Computing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

machines or containers compared to serverless computing. More-
over, existing serverless platforms do not support GPU well, which
can prevent fast-growing deep-learning tasks. If developers hope to
enjoy advantages in simplifying the application development, cloud
providers need to lift some restrictions of serverless platforms to
support various workloads. Currently, serverless-based applications
are most commonly used for running short-lived, transient, and
even emergent tasks with low data volume and hardware capacity.

6.2 Application Design (B)
The challenges of application design account for 16.3% of the to-
tal challenges. On the one hand, developers need to develop a
serverless-based application from scratch, so they ask questions
about specific functionality design in a serverless way. On the other
hand, developers may have legacy applications, and want to migrate
them to serverless platforms, in order to simplify the development,
improve performance, and save cost. Thus, migration-related ques-
tions are issued. In addition, it is inevitable to ask questions about
programming language support in this stage. Detailed leaf cate-
gories are illustrated as follows.

FunctionalityDesign (B.1)This category covers design-related
challenges for implementing specific functionalities during the de-
velopment of a new serverless-based application. They are often
described with the key words “best approach”, such as “What is the
best approach for generating thumbnails [...]?” [2]. Answerers handle
these questions by providing specific design steps or alternative
options.

ApplicationMigration (B.2)This category describes challenges
in migrating from legacy applications to serverless-based applica-
tions. Developers wonder whether or how legacy applications can
be migrated and run on serverless platforms, e.g., “Is it possible to
run Beautiful Soup [...] on AWS Lambda?” [13] and “How can run
Rails web app in AWS Lambda server” [14]. In addition, developers
may need to migrate existing serverless-based applications due
to the platform update or development tools update, so they may
ask how to migrate integrated resources and services in Serverless
Framework from version 0.5 to 1.0 in a safe manner [15].

Programming Language Support (B.3) This category covers
challenges about the programming language support. They are
often considered in the situation of constructing functions with
different programming languages, e.g., “AWS lambda with both
python and java language support” [16]. Developers also prefer
to develop functions with the daily used language, e.g., creating
Openwhisk actions with Swift [17].

Finding 5: The third-largest category in proportion (i.e., 16.3%)
covers the challenges appearing in the Application Design stage.
The majority (67.0%) of these challenges are thrown with Func-
tionality Design.

Discussion and implication: In the application design stage, de-
velopers frequently ask Functionality Design-related questions. It
shows that developers look forward to obtaining the guidance of
best practices or examples for their requirements. Cloud providers
should provide more practical function templates and detailed in-
structions to help developers construct their functions more easily
and quickly. We further observe that the most questions (about 90%)

discuss the functionality design integrating other services that are
provided by the same cloud providers. This is a common pattern for
developing serverless-based applications, since integrating such ser-
vices can simplify the development of serverless-based applications
and improve their performance. However, it can be challenging for
developers to design functions with such a large number of cloud
services. Thus, both researchers and cloud providers can summarize
a standard design specification to help developers better construct
their functions with cloud services. For example, if cloud providers
can maintain a function store, it may be convenient for develop-
ers to reuse existing functions to construct their serverless-based
applications. In addition, it can further make the serverless-based
application development more compositional in nature.

With the popularity of serverless computing, the trend of migrat-
ing legacy applications to serverless platforms may also increase.
Thus, the design issues arising from application migration need to
be solved urgently. Both researchers and cloud providers can pay
more attention to the migration approach of legacy applications to
guide developers in practice. For example, researchers can identify
and refactor specific APIs with dynamic and static analysis. Cloud
providers can further support more mostly-used frameworks (e.g.,
Web frameworks like Spring) so that developers directly run their
legacy applications on serverless platforms.

With serverless computing, it is easier for developers to develop
their applications with different languages (as known as hybrid
programming). In a collaborative team, different developers can
construct their functions with their own familiar languages, and
different functions will be hosted in a dedicated instance and com-
municate with each other. However, not all languages are well
supported. Cloud providers can further support more languages
and optimize their run-time performance. Every coin has two sides.
It is notable that hybrid programming can also increase the complex-
ity of the serverless-based application development, especially for
testing and debugging, which should be addressed by researchers
with more advanced code analysis techniques.

6.3 Environment Configuration (C)
Developers install and configure local environments for further
development. 5.9% of the total challenges are related to the envi-
ronment configuration, and detailed leaf categories are explained
as follows.

Tool Installation (C.1) This category represents challenges in
installing development tools (e.g., AWSCLIs, Azure CLIs, and Server-
less Framework) for serverless-based applications. When developers
fail to install Serverless Framework, they may ask the question like
“Unable to install serverless framework on macosx” [18]. Based on our
observations from all answers and comments, we find that most
installation problems are caused by incorrectly configuring system
variables and missing specific dependencies.

Tool Usage (C.2) This category represents challenges in using
related development tools. They often happen when the command
parameters are used incorrectly. For example, developers fail to
update the value of EventSourceArn of a Lambda function with an
update command, which is caused by the incorrectly configured
parameter “EventSourceArn” in the update command [19].

422

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin Jin, and Xuanzhe Liu

VersionCompatibility (C.3) This category refers to challenges
in dealing with certain versions of tools. Specifically, we find that
commands may not run correctly due to the inherent bugs in cer-
tain versions [20] or the incorrect usage of package versions [3].
For example, developers ask that the command “project” is not
found for Serverless Framework [3]. After checking answers, the
solution is to use the 0.5.x version of Serverless Framework instead
of the 1.x version, because the 1.x version implements the “services”
command to replace the “project” command. Therefore, ensuring
version compatibility is a prerequisite that cannot be ignored in the
environment configuration.

Finding 6: The challenges of development environment config-
uration (5.9%) include tool installation and usage, and version
compatibility. Version Compatibility is dominating, accounting
for 40.5% of the challenges in Environment Configuration.

Discussion and implication: In the environment configuration
stage, how to install the appropriate version is the main concern for
developers. Based on our observations, developers may use incor-
rect versions of tools, and endure inherent bugs of certain versions.
The rapid evolution of development tools is making it challeng-
ing for developers to install the appropriate version, not only in
the serverless-based application development, but also in many
other software tasks, e.g., deep learning deployment [84] and soft-
ware build [95]. Therefore, it is necessary for researchers to deliver
more consistency detection techniques for version compatibility
checking.

6.4 Low-code Development (D)
The significant feature of serverless computing is to represent infras-
tructure as code [66] that simplifies the management (i.e., creation
and modification) of resources. Developers use the cloud console or
a definition file written in JSON or YAML format to integrate with
needed resources, which is known as low-code development [68].
This category covers challenges about low-code development and
accounts for 19.6% of the total challenges. Detailed leaf categories
are illustrated as follows.

Provider/Function Configuration (D.1) This category refers
to challenges about configurations of cloud providers or functions.
They often occur during the event and permission configurations.
For the event configuration, the event source can be Amazon API
Gateway [57], with which functions can be invoked once receiving
an HTTPS request. In our study, we find that developers encounter
request-related problems like “defining the request mapping template
in serverless.yml ” [21]. Additionally, the event source may come
from other services (e.g., storage service like Amazon S3 [60]),
whichwill be triggeredwhen an object is added to a bucket on S3 [4].
Compared to developing a monolithic application, developers often
need to specify the permissions of a function, such as the permission
of accessing the network, and permission of accessing other services.
If not correctly configured, the function will fail to access the target
service due to access denied [22]. In addition, there are also some
configuration challenges, such as choosing the appropriate region
of cloud providers [23], specifying the function timeout [24], etc.
Interestingly, we also find that even a small mistake in the definition
file, e.g., wrong indentation [25] and typos of specific terms [26],

can result in catastrophic consequences. However, there are few
effective tools to deal with such urgent problems.

Resource Configuration (D.2) This category represents chal-
lenges about the configuration of integrated resources in serverless-
based applications. Developers configure specifications (e.g., data-
base name, table information, etc.) when integrating other cloud
services (e.g., AmazonDynamoDB) [27]. Other functions can also be
referenced as resources to compose a complicated serverless-based
application [28].

Custom Configuration (D.3) In addition to the above configu-
rations, developers may have personalized requirements, i.e., cus-
tom configuration. For example, developers try to specify a new
response template with HTTP status to a redirect web page [29].
However, they find “I can do it manually with AWS lambda user in-
terface but I need to do it with serverless framework version v1.”. It also
reflects the challenges in writing the configuration file compared
to the convenient user interface provided by cloud providers.

Finding 7: The challenges on Low-Code Development account
for the second-largest percentage (i.e., 19.6%) of the total chal-
lenges. Provider/Function Configuration is the top category, ac-
counting for 56.5% of the challenges in Low-Code Development.

Discussion and implication: Low-code development is a feature
of developing serverless-based applications, effectively simplifying
the integration of cloud services and management of functions.
However, the related challenges even account for 19.6%, which is
the second-largest category in proportion. Answerers mainly solve
these problems by providing code snippets of specific configura-
tions or modifying existing errors. It shows that developers lack
a comprehensive configuration specification to guide them, and
they are in urgent need of support tools. For cloud providers, they
can provide more instructions and examples, especially the event
and permission settings, to satisfy various configuration require-
ments. For framework developers, they can abstract the underlying
differences of different serverless platforms, and provide a unified
standard so that developers do not need to spend much time on
browsing tedious documentations. For researchers, they can sum-
marize the common issues of low-code developments, and extend
existing code analysis tools and validation tools to help developers
better find the bugs and mistakes of configurations.

6.5 Application Implementation (E)
Developers focus on the application logic without management
underlying infrastructure in serverless computing. Any application
code written by developers can be executed on serverless platforms.
In our taxonomy, the challenges asked by developers most fre-
quently are application implementation accounting for 35.4% of the
total challenges. There are 3 inner categories (i.e., E.2, E.4 and E.6)
and 11 leaf categories. Detailed categories are explained as follows.

Functionality Implementation (E.1) This category refers to
challenges in the implementation of specific functionalities. We find
that there are two types in this category, including both serverless-
unrelated and serverless-related functionality implementations. For
example, a developer makes a mistake in reading a CSV file [30], and
it is a serverless-unrelated functionality implementation problem.

423

An Empirical Study on Challenges of Application Development in Serverless Computing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Another example is a serverless-related functionality implementa-
tion like “updating AWS S3 object metadata through boto3” [31].

Package Integration (E.2) This category represents challenges
encountered in using third-party libraries in functions. Specifically,
when developers prepare to use the method of a certain library, they
must import its package beforehand but may encounter import-
related challenges (E.2.1). They are mainly in the import of external
libraries [32], which is generally solved through modifying the
package path. After importing required packages, especially when
using database services, developers need to establish a connection
in advance [33], and challenges on configuring and connecting such
services (E.2.2) occur. Besides, developers may be incorrect to use
methods of third-party libraries(E.2.3).

Asynchronous Processing (E.3) This category covers chal-
lenges in dealing with asynchronous activities in a function. Due to
the event-driven nature of serverless computing, functions written
in JavaScript often apply asynchronous callbacks with async, await,
and promise. However, many developers fail to correctly use these
features to construct their functions [34].

Data Processing (E.4) This category covers questions about
data processing. Converting raw data into the required format(E.4.1)
is an important factor so that functions can successfully resolve
data from triggered events [35]. Meanwhile, formatting the result
(E.4.2) is critical so that users can obtain the correct response [36].
There are also some incorrect data processing problems caused by
syntax errors (E.4.3) [37].

Debugging and Testing (E.5) This category represents chal-
lenges on debugging and testing of functions. Most questions are
about debugging and they are often described in the format of “how
to debug” [38].

Function Invocation (E.6) Developers can incorporate multi-
ple functions in a single serverless-based application, and these
functions can be invoked internally. This category represents chal-
lenges in invoking functions with different invocation methods
and parameters. Most functions are configured to be triggered by
Amazon API Gateway, so most challenges are related to supporting
various HTTP methods (E.6.1), e.g., “POST” and “GET” [39]. Other
challenges are to transmit data parameters to functions (E.6.2), e.g.,
JSON-format payload [40] or binary data [41].

Finding 8: Most (i.e. 35.4%) of the challenges occur in the Ap-
plication Implementation stage, covering a wide spectrum of
11 leaf categories. Package Integration and Functionality Imple-
mentation are the top two categories, accounting for 30.8% and
21.4% of challenges in this stage, respectively.

Discussion and implication: Our results show that package in-
tegration is the most common problem in the application imple-
mentation stage. Especially, developers have to pay more attention
to keeping the connection of database service in order to conform
to the timeout limit of functions. Such problems may even not
throw any exceptions [42], which are difficult to detect and de-
bug for developers. For cloud providers, they can further improve
their log/monitoring services (e.g., Amazon CloudWatch) to pro-
vide detailed logs and descriptions of error information, which can
help developers better locate their bad code. For researchers, they
can extend the existing analysis and diagnosis technologies with

consideration of characteristics of serverless-based applications.
Meanwhile, the unified programming model also needs to be stud-
ied to simplify developers’ development issues on multiple different
serverless platforms.

We also find that another big bottleneck is functionality imple-
mentation. In this category, the first two authors manually check
these posts and find that serverless-unrelated and serverless-related
functionality implementations account for 33.3% and 66.7%, re-
spectively. It illustrates that the serverless computing paradigm
increases the programming difficulty of developers, although reduc-
ing most operational tasks. On the one hand, cloud providers can
further simplify the programming model for serverless-based appli-
cations. On the other hand, cloud providers can also provide mature
development and debugging tools to assist developers’ development.
The challenge of debugging and testing tools is also found in the cat-
egory (E.5) of our taxonomy. Traditional tools are not fully suitable
for serverless-based applications, and new approaches are needed.
Additionally, developers should avoid common pitfalls obtained
from asynchronous processing and data processing, e.g., use of
asynchronous statements, data parsing of the event, and format
setting of the response, etc.

6.6 Application Deployment (F)
After implementing serverless-based applications, developers can
deploy their applications to serverless platforms. Developers can
package their functions and dependent libraries into a single bundle,
and upload them to serverless platforms. Therefore, this category
is deployment-related problems, accounting for 4.4% of the total
challenges. Detailed leaf categories are explained as follows.

Procedure (F.1) This category describes questions about the
procedure of a specific deployment, such as whether it is possible
to deploy the same package to different cloud providers [43].

Packaging (F.2) This category represents challenges in packag-
ing all code and dependent libraries of a serverless-based applica-
tion. Developers often fail to package all related files in the correct
format [44], and may also encounter the problem of exceeding the
package size limit.

Deployment Tool Usage (F.3) This category refers to chal-
lenges in correctly using commands of deployment tools. For in-
stance, the command “sls resources deploy” used by developers is
incorrect [45], and instead the command “sls deploy” should be
used.

Finding 9: Application Deployment is the development stage
where developers ask the least questions. It accounts for 4.4%
of the total challenges, and contains Procedure, Packaging, and
Deployment Tool Usage categories.

Discussion and implication: We further analyze Procedure and
Deployment Tool Usage categories and find that developers have
diverse deployment requirements, e.g., deploying with a specific
version, deploying with an environment variable, or deploying the
same package to multiple cloud providers, etc. For cloud providers,
they can think about how to facilitate various deployment require-
ments. For example, cloud providers provide a custom deployment
template to fill in the necessary and optional information (e.g., ver-
sion and environment variable), and then apply the deployment tool

424

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin Jin, and Xuanzhe Liu

to complete the deployment tasks with this template. In addition,
for the size limit of the deployment package, researchers can work
on more analysis techniques to identify and remove unused code
or files to reduce the package size of serverless-based applications.

6.7 Non-functional Properties (G)
Developers may consider some non-functional properties in the
development of serverless-based applications. 10.4% of the total
challenges are about non-functional properties. Specific categories
are introduced as follows.

Networking (G.1) A function might integrate with external ser-
vices (internal or publically hosted Web services, cloud services,
databases, etc.) via the network. Thus, challenges related to net-
working occur, and they are mainly in Virtual Private Cloud (VPC)
configuration. Some services can only be accessed by a function
under the same VPC. For instance, Lambda functions connect to
the Amazon RDS (i.e., a relational database) instances through the
public Internet, but it fails due to a wrong VPC configuration [7].

Monitoring (G.2) This category represents questions about
monitoring for serverless-based applications, e.g., whether all func-
tions are completed normally [46].

Version Control (G.3) This category is mainly involved with
the version management of serverless-based applications. Devel-
opers may be looking forward to an update or rollback version
for applications [47]. Thus, serverless-based applications require
version management like traditional applications using Git.

Cost (G.4) This category covers challenges about the billing
model of serverless computing. Although serverless computing
charges in a pay-as-you-gomanner, there are still some concerns for
developers. It is more difficult to predict the cost of a function, such
as calculating the cost of the main function for a nested application
when multiple functions are orchestrated in the main function [48].

Concurrency (G.5) This category represents questions about
dealing with concurrent requests. They are often limited by the
inherent concurrency strategy of different serverless platforms,
such as concurrency number [49] and execution time [50].

Performance (G.6) This category represents questions about
application performance. First, for execution latency (G.6.1), devel-
opers try to present a certain strategy to improve the execution effi-
ciency of functions. For example, developers can speed up the date
loading and save the network bandwidth by compressing data [51].
Second, for resource utilization (G.6.2), developers find competi-
tion between resources, such as I/O and CPU [52]. Third, for cold
startup (G.6.3), when an invocation of a function occurs for the first
time, this invocation is experiencing a cold startup and creating
a function container. This container remains active and available
for subsequent invocations for at least a few minutes before it is
terminated. Developers often invoke a function periodically to re-
duce cold startup, i.e., “keeping warm” [53]. Finally, for throughput
(G.6.4), developers look for ways to improve throughput, e.g., the
read capacity of a database [54].

Security (G.7) Serverless computing hides infrastructure man-
agement from developers, but such opacity may increase concerns
on security. They are mainly in the endpoint protection of func-
tions [55] and data protection between functions [56]. Answerers

mainly solve such questions by applying authentication and en-
cryption on the endpoint and communication.

Finding 10: 10.4% of the total challenges are in Non-Functional
Properties covering 10 leaf categories. Networking and Per-
formance (53.0% in total) are the top two categories in Non-
Functional Properties.

Discussion and implication: Our results show that two biggest
challenges are networking and performance in non-functional
properties. Specifically, networking-related challenges are VPC
settings. Developers can strengthen the networking knowledge,
especially the VPC configuration process. For performance-related
challenges, developers expect to improve performance from differ-
ent perspectives, i.e., execution latency, resource utilization, cold
startup, and throughput. Particularly, the performance of serverless
platforms is a broad topic in academia. For example, some mea-
surement work [96, 107, 110] has evaluated the performance of
different serverless platforms from the execution latency of func-
tions, resource utilization, throughput, etc. Moreover, some stud-
ies [77, 99, 103] have minimized cold startup to improve execution
efficiency through system optimization or sandboxing design. By
comparison, we find that academia and industry have similar fo-
cuses in terms of performance. In this situation, researchers can
consider improving performance from the perspective of the de-
veloper practice, e.g., using data compression to reduce network
overhead [51]. In addition, we find that developers ask fewer ques-
tions about Performance (2.4%) than Application Implication (35.4%).
This observation coincides with the observation of other work [76],
i.e., developers ask more about the correctness of their programs
than performance.

Under the serverless computing paradigm, the version control
and billing model still face new challenges, e.g., the version update
and rollback of a project (or development environment or config-
uration), and cost prediction for function retry. Thus, to promote
the use of serverless computing, researchers can design version
control tools that conform to this new programming paradigm, and
cloud providers try to provide a more user-friendly billing model
to reduce the cost of non-real function execution.

7 THREATS TO VALIDITY
In this section, we discuss threats to the validity of our study.

Selection bias of data source. Similar to previous research [76,
78, 80, 95, 100, 109, 111], our work uses SO as the only data source
to study the challenges that developers encounter, which may over-
look useful insights from other data sources. Thus, we plan to
expand our analysis to other data sources in future work, further
verifying our findings. Nevertheless, because SO data contains posts
from both novices and experts [112], we believe that our findings
and implications are still valid.

Construction of tag set.We use a set of tags to extract SO ques-
tions related to serverless computing. However, since the chosen
thresholds for significance and relevance metrics may omit some
tags related to serverless computing, we cannot guarantee the tag
set is complete. To mitigate this threat, we adopt the lowest thresh-
olds used in previous work [80, 95] to include as many relevant

425

An Empirical Study on Challenges of Application Development in Serverless Computing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

tags as possible. Furthermore, we refine the tag set through further
manual inspection to ensure the precision.

Subjectivity of researchers. In this study, we adopt manual
analysis to construct the taxonomy of challenges. The manual anal-
ysis may pose threats to the validity of our taxonomy. In order
to minimize this threat, the first two authors and an experienced
arbitrator discuss and reach an agreement for conflicts. Meanwhile,
we calculate the inter-rater agreement as 0.836, which is relatively
high and indicates the reliability of our labeling procedure.

Saturation of taxonomy.When classifying the remaining 30%
of questions, we discover five new categories that are added to
the final taxonomy. It may raise the uncertainty about the level
of completeness of our taxonomy. However, the number of newly-
added categories in this study is smaller than that in previous
work [84], and these categories contain few questions (no more
than five). Thus, our taxonomy is relatively complete. Meanwhile,
the taxonomy is carefully checked by the third arbitrator with seven
years of cloud computing experience.

8 RELATEDWORK
In this section, we summarize related work of serverless computing
as well as empirical studies on challenges that developers encounter
in the widely used techniques.

Studies on serverless computing. Serverless computing is a
new trending paradigm of cloud computing, and lots of related
studies have been proposed. First, some work [96, 103, 107, 110]
has evaluated different serverless platforms from various aspects.
For example, Wang et al. [107] conducted a measurement study to
characterize the architectures, performance, and resource efficiency
for commercial serverless platforms. Mohanty et al. [96] compared
the features and performance of open-source implementations of
serverless computing. Second, some work [88, 94] has analyzed
the characteristics of serverless-based applications to guide the
design of approaches related to serverless computing. Furthermore,
some literature reviews have been conducted to understand the gap
related to serverless computing in academia and industry [101, 105].
Different from the previous work of serverless computing, our study
focuses on the specific challenges that developers encounter in
developing serverless-based applications.

Studies on developers’ challenges. Many studies have inves-
tigated the software developers’ perspectives by mining Q&A web-
sites. Particularly, several empirical studies have leveraged SO data
on different domains such as machine learning [78], deep learning
deployment [84], mobile [100], security [109], big data [80], con-
currency [76], etc. Specifically, Alshangiti et al. [78] conducted an
empirical study of machine learning-related posts on SO to under-
stand the challenges that developers face in developing machine
learning applications. Chen et al. [84] presented a comprehensive
study to explore what specific challenges developers face when
deploying DL software. Ahmed et al. [76] understood the concur-
rent programming problem that developers often encounter when
writing concurrent code. In similar, Bagherzadeh et al. [80] investi-
gated interests and difficulties of big data developers by analyzing
SO posts, while Rosen et al. [100] examined what mobile develop-
ers ask about. Considering the increasing popularity of serverless
computing, in this work, we make the first attempt to investigate

challenges that developers related to serverless computing may
encounter.

9 CONCLUSION
Through analyzing SO questions related to serverless computing,
we have found that the topic of serverless computing is gaining
increasing attention among software engineers. Furthermore, we
have demonstrated that questions related to serverless computing
are more difficult to answer than other challenging topics in SE,
e.g., Web development, concurrency, mobile, which motivates us
to identify the specific challenges behind them. We have manually
inspected 619 sampled questions related to serverless computing
and constructed a comprehensive taxonomy, including 11 inner
categories and 36 leaf categories, representing challenges that de-
velopers encounter in developing serverless-based applications.
In addition, our study also provide a series of practical findings
and actionable implications for developers, researchers, and cloud
providers, intending to highlight good practices and interesting
research avenues in adopting the serverless computing paradigm.

ACKNOWLEDGMENTS
This work was supported by the R&D Projects in Key Areas of
Guangdong Province under the grant number 2020B010164002,
the National Natural Science Foundation of China under the grant
number 61725201, the Beijing Outstanding Young Scientist Program
under the grant number BJJWZYJH01201910001004, and the PKU-
Baidu Fund Project under the grant number 2020BD007.

REFERENCES
[1] [n.d.]. https://stackoverflow.com/questions/49172437/how-serverless-like-aws-

lambda-and-google-cloud-function-work-on-infrastructure. Retrieved on
February 16, 2021.

[2] [n.d.]. https://stackoverflow.com/questions/54760261/what-is-the-best-
approach-for-generating-thumbnails-and-uploading-to-s3-bucket-i. Retrieved
on February 16, 2021.

[3] [n.d.]. https://stackoverflow.com/questions/44678952/moonmail-installation-
issue-command-project-not-found. Retrieved on February 16, 2021.

[4] [n.d.]. https://stackoverflow.com/questions/46765894/can-we-use-cloudwatch-
events-on-s3-object-with-serverless. Retrieved on February 16, 2021.

[5] [n.d.]. https://stackoverflow.com/questions/57618689/how-do-i-use-aws-
secret-manager-with-nodejs-lambda. Retrieved on February 16, 2021.

[6] [n.d.]. https://stackoverflow.com/questions/54233577/way-to-include-exlude-
directories-controlling-aws-lambda-size-serverless. Retrieved on February 16,
2021.

[7] [n.d.]. https://stackoverflow.com/questions/55019736/aws-lambda-in-vpc-with-
rds-and-internet-connection. Retrieved on February 16, 2021.

[8] [n.d.]. https://stackoverflow.com/questions/58372902/how-to-use-request-
module-in-node-js-lambda. Retrieved on February 16, 2021.

[9] [n.d.]. https://stackoverflow.com/questions/62005562/aws-lambda-the-
function-is-idle. Retrieved on February 16, 2021.

[10] [n.d.]. https://stackoverflow.com/questions/55017141/aws-lambda-extract-
large-data-and-upload-to-s3. Retrieved on February 16, 2021.

[11] [n.d.]. https://stackoverflow.com/questions/57125277/bring-machine-learning-
to-live-production-with-aws-lambda-function. Retrieved on February 16, 2021.

[12] [n.d.]. https://stackoverflow.com/questions/41664708/cognito-user-pool-
authorizer-with-serverless-framework. Retrieved on February 16, 2021.

[13] [n.d.]. https://stackoverflow.com/questions/45692168/web-scraping-with-aws-
lambda. Retrieved on February 16, 2021.

[14] [n.d.]. https://stackoverflow.com/questions/51095849/how-can-run-rails-web-
app-in-aws-lambda-server. Retrieved on February 16, 2021.

[15] [n.d.]. https://stackoverflow.com/questions/44842070/aws-serverless-resources-
deploy-from-v0-5-to-v1-0. Retrieved on February 16, 2021.

[16] [n.d.]. https://stackoverflow.com/questions/61548553/aws-lambda-with-both-
python-and-java-language-support. Retrieved on February 16, 2021.

[17] [n.d.]. https://stackoverflow.com/questions/45308893/sharing-code-across-
swift-openwhisk-actions. Retrieved on February 16, 2021.

426

https://stackoverflow.com/questions/49172437/how-serverless-like-aws-lambda-and-google-cloud-function-work-on-infrastructure
https://stackoverflow.com/questions/49172437/how-serverless-like-aws-lambda-and-google-cloud-function-work-on-infrastructure
https://stackoverflow.com/questions/54760261/what-is-the-best-approach-for-generating-thumbnails-and-uploading-to-s3-bucket-i
https://stackoverflow.com/questions/54760261/what-is-the-best-approach-for-generating-thumbnails-and-uploading-to-s3-bucket-i
https://stackoverflow.com/questions/44678952/moonmail-installation-issue-command-project-not-found
https://stackoverflow.com/questions/44678952/moonmail-installation-issue-command-project-not-found
https://stackoverflow.com/questions/46765894/can-we-use-cloudwatch-events-on-s3-object-with-serverless
https://stackoverflow.com/questions/46765894/can-we-use-cloudwatch-events-on-s3-object-with-serverless
https://stackoverflow.com/questions/57618689/how-do-i-use-aws-secret-manager-with-nodejs-lambda
https://stackoverflow.com/questions/57618689/how-do-i-use-aws-secret-manager-with-nodejs-lambda
https://stackoverflow.com/questions/54233577/way-to-include-exlude-directories-controlling-aws-lambda-size-serverless
https://stackoverflow.com/questions/54233577/way-to-include-exlude-directories-controlling-aws-lambda-size-serverless
https://stackoverflow.com/questions/55019736/aws-lambda-in-vpc-with-rds-and-internet-connection
https://stackoverflow.com/questions/55019736/aws-lambda-in-vpc-with-rds-and-internet-connection
https://stackoverflow.com/questions/58372902/how-to-use-request-module-in-node-js-lambda
https://stackoverflow.com/questions/58372902/how-to-use-request-module-in-node-js-lambda
https://stackoverflow.com/questions/62005562/aws-lambda-the-function-is-idle
https://stackoverflow.com/questions/62005562/aws-lambda-the-function-is-idle
https://stackoverflow.com/questions/55017141/aws-lambda-extract-large-data-and-upload-to-s3
https://stackoverflow.com/questions/55017141/aws-lambda-extract-large-data-and-upload-to-s3
https://stackoverflow.com/questions/57125277/bring-machine-learning-to-live-production-with-aws-lambda-function
https://stackoverflow.com/questions/57125277/bring-machine-learning-to-live-production-with-aws-lambda-function
https://stackoverflow.com/questions/41664708/cognito-user-pool-authorizer-with-serverless-framework
https://stackoverflow.com/questions/41664708/cognito-user-pool-authorizer-with-serverless-framework
https://stackoverflow.com/questions/45692168/web-scraping-with-aws-lambda
https://stackoverflow.com/questions/45692168/web-scraping-with-aws-lambda
https://stackoverflow.com/questions/51095849/how-can-run-rails-web-app-in-aws-lambda-server
https://stackoverflow.com/questions/51095849/how-can-run-rails-web-app-in-aws-lambda-server
https://stackoverflow.com/questions/44842070/aws-serverless-resources-deploy-from-v0-5-to-v1-0
https://stackoverflow.com/questions/44842070/aws-serverless-resources-deploy-from-v0-5-to-v1-0
https://stackoverflow.com/questions/61548553/aws-lambda-with-both-python-and-java-language-support
https://stackoverflow.com/questions/61548553/aws-lambda-with-both-python-and-java-language-support
https://stackoverflow.com/questions/45308893/sharing-code-across-swift-openwhisk-actions
https://stackoverflow.com/questions/45308893/sharing-code-across-swift-openwhisk-actions

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin Jin, and Xuanzhe Liu

[18] [n.d.]. https://stackoverflow.com/questions/43520629/unable-to-install-
serverless-framework-on-macosx. Retrieved on February 16, 2021.

[19] [n.d.]. https://stackoverflow.com/questions/60808256/update-eventsourcearn-
through-aws-cli. Retrieved on February 16, 2021.

[20] [n.d.]. https://stackoverflow.com/questions/51925672/sls-dynamodb-start-
throws-spawn-java-enoent. Retrieved on February 16, 2021.

[21] [n.d.]. https://stackoverflow.com/questions/40569505/proper-request-template-
mapping-or-process-in-order-to-upload-a-photo-to-s3-usin. Retrieved on
February 16, 2021.

[22] [n.d.]. https://stackoverflow.com/questions/47249256/accessdenied-error-
message-when-calling-aws-s3-buckets-from-serverless-lambda-fu. Retrieved
on February 16, 2021.

[23] [n.d.]. https://stackoverflow.com/questions/40640433/what-is-the-syntax-in-
serverless-yml-file-to-deploy-lambda-to-multiple-regions. Retrieved on Feb-
ruary 16, 2021.

[24] [n.d.]. https://stackoverflow.com/questions/58504542/how-to-fix-timed-out-
error-using-python-in-aws-lambda-functions-when-i-am-using. Retrieved on
February 16, 2021.

[25] [n.d.]. https://stackoverflow.com/questions/58224566/serverless-framework-
ignoring-authorizer-block-in-lambda-proxy-setup. Retrieved on February 16,
2021.

[26] [n.d.]. https://stackoverflow.com/questions/54581575/conditional-resource-in-
serverless. Retrieved on February 16, 2021.

[27] [n.d.]. https://stackoverflow.com/questions/47327765/creating-two-dynamodb-
tables-in-serverless-yml. Retrieved on February 16, 2021.

[28] [n.d.]. https://stackoverflow.com/questions/44032664/reference-function-from-
within-serverless-yml. Retrieved on February 16, 2021.

[29] [n.d.]. https://stackoverflow.com/questions/39793242/serverless-response-
template-with-status-code. Retrieved on February 16, 2021.

[30] [n.d.]. https://stackoverflow.com/questions/56849240/how-to-read-csv-file-
from-s3-bucket-in-aws-lambda. Retrieved on February 16, 2021.

[31] [n.d.]. https://stackoverflow.com/questions/64998595/signature-error-while-
updating-s3-object-metadata-through-boto3. Retrieved on February 16, 2021.

[32] [n.d.]. https://stackoverflow.com/questions/37169377/serverless-framework-
how-to-add-external-npm-packages. Retrieved on February 16, 2021.

[33] [n.d.]. https://stackoverflow.com/questions/35969178/serverless-framework-
with-node-mysql. Retrieved on February 16, 2021.

[34] [n.d.]. https://stackoverflow.com/questions/60506343/why-would-this-aws-
lambda-cause-error-warning-callback-response-already-delive. Retrieved on
February 16, 2021.

[35] [n.d.]. https://stackoverflow.com/questions/56712973/passing-a-json-file-in-
event-event-cannot-read-keys-only-values. Retrieved on February 16, 2021.

[36] [n.d.]. https://stackoverflow.com/questions/49328315/how-to-send-back-non-
stringified-data-in-serverles-aws. Retrieved on February 16, 2021.

[37] [n.d.]. https://stackoverflow.com/questions/63476921/lambda-function-in-
python-returning-configuration-error. Retrieved on February 16, 2021.

[38] [n.d.]. https://stackoverflow.com/questions/45668631/debugging-aws-
serverless-lambda-functions-with-dynamodbevents-in-c-sharp. Retrieved on
February 16, 2021.

[39] [n.d.]. https://stackoverflow.com/questions/53626962/what-is-the-correct-way-
to-get-the-origin-header-in-a-serverless-deployed-lambda. Retrieved on Feb-
ruary 16, 2021.

[40] [n.d.]. https://stackoverflow.com/questions/60381331/aws-lambda-function-
cloudwatch-how-to-pass-the-right-parameters-to-a-timed-ex. Retrieved on
February 16, 2021.

[41] [n.d.]. https://stackoverflow.com/questions/51850931/openwhisk-and-binary-
data-from-google-flatbuffers. Retrieved on February 16, 2021.

[42] [n.d.]. https://stackoverflow.com/questions/52465530/sequelize-connection-
timeout-while-using-serverless-aurora-looking-for-a-way-to. Retrieved on
February 16, 2021.

[43] [n.d.]. https://stackoverflow.com/questions/49045256/serverless-deploying-to-
aws-azure-or-gcp. Retrieved on February 16, 2021.

[44] [n.d.]. https://stackoverflow.com/questions/56575448/why-i-missing-
dependencies-in-aws-lambda-when-deploy-packages-in-python. Retrieved
on February 16, 2021.

[45] [n.d.]. https://stackoverflow.com/questions/48315409/serverless-command-
resources-not-found. Retrieved on February 16, 2021.

[46] [n.d.]. https://stackoverflow.com/questions/63002322/how-to-monitor-if-all-
aws-lambda-functions-executions-finish-correctly. Retrieved on February 16,
2021.

[47] [n.d.]. https://stackoverflow.com/questions/51005379/how-do-you-manage-
updates-rollbacks-and-multiples-versions-with-appsync-and-serv. Retrieved
on February 16, 2021.

[48] [n.d.]. https://stackoverflow.com/questions/51854491/running-a-graphql-app-
on-aws-lambda. Retrieved on February 16, 2021.

[49] [n.d.]. https://stackoverflow.com/questions/52210036/openwhisk-increase-
number-of-concurrent-requests. Retrieved on February 16, 2021.

[50] [n.d.]. https://stackoverflow.com/questions/52280344/openwhisk-request-has-
not-yet-finished. Retrieved on February 16, 2021.

[51] [n.d.]. https://stackoverflow.com/questions/48309760/how-to-send-gzipped-
json-response-from-google-cloud-functions. Retrieved on February 16, 2021.

[52] [n.d.]. https://stackoverflow.com/questions/47373834/ffmpeg-azure-function-
consumption-plan-low-cpu-availability-for-high-volume-requ. Retrieved on
February 16, 2021.

[53] [n.d.]. https://stackoverflow.com/questions/54895958/how-can-i-keep-warm-
an-aws-lambda-invoked-from-api-gateway-with-proxy-integratio. Retrieved
on February 16, 2021.

[54] [n.d.]. https://stackoverflow.com/questions/51703030/determine-read-capacity-
unit-for-dynamodb-table. Retrieved on February 16, 2021.

[55] [n.d.]. https://stackoverflow.com/questions/33001798/how-to-protect-
serverless-framework-endpoints-from-abuse-dos. Retrieved on February 16,
2021.

[56] [n.d.]. https://stackoverflow.com/questions/48206257/protect-data-in-transit-
when-two-lambda-communicate-via-aws-sns-simple-notifica. Retrieved on
February 16, 2021.

[57] [n.d.]. Amazon API Gateway. https://aws.amazon.com/api-gateway/. Retrieved
on February 16, 2021.

[58] [n.d.]. Amazon DynamoDB. https://aws.amazon.com/dynamodb/?nc1=h_ls.
Retrieved on February 16, 2021.

[59] [n.d.]. Amazon RDS. https://aws.amazon.com/rds/. Retrieved on February 16,
2021.

[60] [n.d.]. Amazon S3. https://aws.amazon.com/s3/. Retrieved on February 16,
2021.

[61] [n.d.]. AWS Lambda. https://docs.aws.amazon.com/lambda/latest/dg/welcome.
html. Retrieved on February 16, 2021.

[62] [n.d.]. Azure Functions. https://docs.microsoft.com/en-us/azure/azure-
functions/. Retrieved on February 16, 2021.

[63] [n.d.]. The CIO’s guide to serverless computing. https://www.gartner.com/
smarterwithgartner/the-cios-guide-to-serverless-computing/. Retrieved on
February 16, 2020.

[64] [n.d.]. Function-as-a-Service market. https://www.marketsandmarkets.com/
Market-Reports/function-as-a-service-market-127202409.html. Retrieved on
February 16, 2021.

[65] [n.d.]. Google Cloud Functions. https://cloud.google.com/functions. Retrieved
on February 16, 2021.

[66] [n.d.]. Infrastructure as code. https://en.wikipedia.org/wiki/Infrastructure_as_
code. Retrieved on February 16, 2021.

[67] [n.d.]. LocalStack: a fully functional local AWS cloud stack. https://github.com/
localstack/localstack. Retrieved on February 16, 2020.

[68] [n.d.]. Low-code development. https://en.wikipedia.org/wiki/Low-code_
development_platform. Retrieved on February 16, 2021.

[69] [n.d.]. OpenFaaS. https://www.openfaas.com/. Retrieved on February 16, 2021.
[70] [n.d.]. Openwhisk. https://openwhisk.apache.org/. Retrieved on February 16,

2021.
[71] [n.d.]. R documentation. https://www.rdocumentation.org/packages/stats/

versions/3.6.2/topics/prop.test. Retrieved on February 16, 2020.
[72] [n.d.]. Serverless Framework. https://www.serverless.com/. Retrieved on

February 16, 2021.
[73] [n.d.]. Stack Exchange Data Dump. https://archive.org/details/stackexchange.

Retrieved on February 16, 2021.
[74] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-

Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software
documentation issues unveiled. In Proceedings of the 41st International Confer-
ence on Software Engineering, ICSE 2019. 1199–1210. https://doi.org/10.1109/
icse.2019.00122

[75] Md Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K Roy, and Kevin A
Schneider. 2018. Classifying stack overflow posts on API issues. In Proceedings
of 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2018. 244–254. https://doi.org/10.1109/saner.2018.8330213

[76] Syed Ahmed and Mehdi Bagherzadeh. 2018. What do concurrency developers
ask about? A large-scale study using Stack Overflow. In Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2018. 30:1–30:10. https://doi.org/10.1145/3239235.3239524

[77] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards high-
performance serverless computing. In Proceedings of the 2018 USENIX Annual
Technical Conference, ATC 2018. 923–935.

[78] Moayad Alshangiti, Hitesh Sapkota, Pradeep K. Murukannaiah, Xumin Liu, and
Qi Yu. 2019. Why is developing machine learning applications challenging? A
study on Stack Overflow posts. In Proceedings of the International Symposium
on Empirical Software Engineering and Measurement, ESEM 2019. 1–11. https:
//doi.org/10.1109/esem.2019.8870187

[79] Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter. 2018.
Sprocket: A serverless video processing framework. In Proceedings of the
2018 ACM Symposium on Cloud Computing, SoCC 2018. 263–274. https:
//doi.org/10.1145/3267809.3267815

427

https://stackoverflow.com/questions/43520629/unable-to-install-serverless-framework-on-macosx
https://stackoverflow.com/questions/43520629/unable-to-install-serverless-framework-on-macosx
https://stackoverflow.com/questions/60808256/update-eventsourcearn-through-aws-cli
https://stackoverflow.com/questions/60808256/update-eventsourcearn-through-aws-cli
https://stackoverflow.com/questions/51925672/sls-dynamodb-start-throws-spawn-java-enoent
https://stackoverflow.com/questions/51925672/sls-dynamodb-start-throws-spawn-java-enoent
https://stackoverflow.com/questions/40569505/proper-request-template-mapping-or-process-in-order-to-upload-a-photo-to-s3-usin
https://stackoverflow.com/questions/40569505/proper-request-template-mapping-or-process-in-order-to-upload-a-photo-to-s3-usin
https://stackoverflow.com/questions/47249256/accessdenied-error-message-when-calling-aws-s3-buckets-from-serverless-lambda-fu
https://stackoverflow.com/questions/47249256/accessdenied-error-message-when-calling-aws-s3-buckets-from-serverless-lambda-fu
https://stackoverflow.com/questions/40640433/what-is-the-syntax-in-serverless-yml-file-to-deploy-lambda-to-multiple-regions
https://stackoverflow.com/questions/40640433/what-is-the-syntax-in-serverless-yml-file-to-deploy-lambda-to-multiple-regions
https://stackoverflow.com/questions/58504542/how-to-fix-timed-out-error-using-python-in-aws-lambda-functions-when-i-am-using
https://stackoverflow.com/questions/58504542/how-to-fix-timed-out-error-using-python-in-aws-lambda-functions-when-i-am-using
https://stackoverflow.com/questions/58224566/serverless-framework-ignoring-authorizer-block-in-lambda-proxy-setup
https://stackoverflow.com/questions/58224566/serverless-framework-ignoring-authorizer-block-in-lambda-proxy-setup
https://stackoverflow.com/questions/54581575/conditional-resource-in-serverless
https://stackoverflow.com/questions/54581575/conditional-resource-in-serverless
https://stackoverflow.com/questions/47327765/creating-two-dynamodb-tables-in-serverless-yml
https://stackoverflow.com/questions/47327765/creating-two-dynamodb-tables-in-serverless-yml
https://stackoverflow.com/questions/44032664/reference-function-from-within-serverless-yml
https://stackoverflow.com/questions/44032664/reference-function-from-within-serverless-yml
https://stackoverflow.com/questions/39793242/serverless-response-template-with-status-code
https://stackoverflow.com/questions/39793242/serverless-response-template-with-status-code
https://stackoverflow.com/questions/56849240/how-to-read-csv-file-from-s3-bucket-in-aws-lambda
https://stackoverflow.com/questions/56849240/how-to-read-csv-file-from-s3-bucket-in-aws-lambda
https://stackoverflow.com/questions/64998595/signature-error-while-updating-s3-object-metadata-through-boto3
https://stackoverflow.com/questions/64998595/signature-error-while-updating-s3-object-metadata-through-boto3
https://stackoverflow.com/questions/37169377/serverless-framework-how-to-add-external-npm-packages
https://stackoverflow.com/questions/37169377/serverless-framework-how-to-add-external-npm-packages
https://stackoverflow.com/questions/35969178/serverless-framework-with-node-mysql
https://stackoverflow.com/questions/35969178/serverless-framework-with-node-mysql
https://stackoverflow.com/questions/60506343/why-would-this-aws-lambda-cause-error-warning-callback-response-already-delive
https://stackoverflow.com/questions/60506343/why-would-this-aws-lambda-cause-error-warning-callback-response-already-delive
https://stackoverflow.com/questions/56712973/passing-a-json-file-in-event-event-cannot-read-keys-only-values
https://stackoverflow.com/questions/56712973/passing-a-json-file-in-event-event-cannot-read-keys-only-values
https://stackoverflow.com/questions/49328315/how-to-send-back-non-stringified-data-in-serverles-aws
https://stackoverflow.com/questions/49328315/how-to-send-back-non-stringified-data-in-serverles-aws
https://stackoverflow.com/questions/63476921/lambda-function-in-python-returning-configuration-error
https://stackoverflow.com/questions/63476921/lambda-function-in-python-returning-configuration-error
https://stackoverflow.com/questions/45668631/debugging-aws-serverless-lambda-functions-with-dynamodbevents-in-c-sharp
https://stackoverflow.com/questions/45668631/debugging-aws-serverless-lambda-functions-with-dynamodbevents-in-c-sharp
https://stackoverflow.com/questions/53626962/what-is-the-correct-way-to-get-the-origin-header-in-a-serverless-deployed-lambda
https://stackoverflow.com/questions/53626962/what-is-the-correct-way-to-get-the-origin-header-in-a-serverless-deployed-lambda
https://stackoverflow.com/questions/60381331/aws-lambda-function-cloudwatch-how-to-pass-the-right-parameters-to-a-timed-ex
https://stackoverflow.com/questions/60381331/aws-lambda-function-cloudwatch-how-to-pass-the-right-parameters-to-a-timed-ex
https://stackoverflow.com/questions/51850931/openwhisk-and-binary-data-from-google-flatbuffers
https://stackoverflow.com/questions/51850931/openwhisk-and-binary-data-from-google-flatbuffers
https://stackoverflow.com/questions/52465530/sequelize-connection-timeout-while-using-serverless-aurora-looking-for-a-way-to
https://stackoverflow.com/questions/52465530/sequelize-connection-timeout-while-using-serverless-aurora-looking-for-a-way-to
https://stackoverflow.com/questions/49045256/serverless-deploying-to-aws-azure-or-gcp
https://stackoverflow.com/questions/49045256/serverless-deploying-to-aws-azure-or-gcp
https://stackoverflow.com/questions/56575448/why-i-missing-dependencies-in-aws-lambda-when-deploy-packages-in-python
https://stackoverflow.com/questions/56575448/why-i-missing-dependencies-in-aws-lambda-when-deploy-packages-in-python
https://stackoverflow.com/questions/48315409/serverless-command-resources-not-found
https://stackoverflow.com/questions/48315409/serverless-command-resources-not-found
https://stackoverflow.com/questions/63002322/how-to-monitor-if-all-aws-lambda-functions-executions-finish-correctly
https://stackoverflow.com/questions/63002322/how-to-monitor-if-all-aws-lambda-functions-executions-finish-correctly
https://stackoverflow.com/questions/51005379/how-do-you-manage-updates-rollbacks-and-multiples-versions-with-appsync-and-serv
https://stackoverflow.com/questions/51005379/how-do-you-manage-updates-rollbacks-and-multiples-versions-with-appsync-and-serv
https://stackoverflow.com/questions/51854491/running-a-graphql-app-on-aws-lambda
https://stackoverflow.com/questions/51854491/running-a-graphql-app-on-aws-lambda
https://stackoverflow.com/questions/52210036/openwhisk-increase-number-of-concurrent-requests
https://stackoverflow.com/questions/52210036/openwhisk-increase-number-of-concurrent-requests
https://stackoverflow.com/questions/52280344/openwhisk-request-has-not-yet-finished
https://stackoverflow.com/questions/52280344/openwhisk-request-has-not-yet-finished
https://stackoverflow.com/questions/48309760/how-to-send-gzipped-json-response-from-google-cloud-functions
https://stackoverflow.com/questions/48309760/how-to-send-gzipped-json-response-from-google-cloud-functions
https://stackoverflow.com/questions/47373834/ffmpeg-azure-function-consumption-plan-low-cpu-availability-for-high-volume-requ
https://stackoverflow.com/questions/47373834/ffmpeg-azure-function-consumption-plan-low-cpu-availability-for-high-volume-requ
https://stackoverflow.com/questions/54895958/how-can-i-keep-warm-an-aws-lambda-invoked-from-api-gateway-with-proxy-integratio
https://stackoverflow.com/questions/54895958/how-can-i-keep-warm-an-aws-lambda-invoked-from-api-gateway-with-proxy-integratio
https://stackoverflow.com/questions/51703030/determine-read-capacity-unit-for-dynamodb-table
https://stackoverflow.com/questions/51703030/determine-read-capacity-unit-for-dynamodb-table
https://stackoverflow.com/questions/33001798/how-to-protect-serverless-framework-endpoints-from-abuse-dos
https://stackoverflow.com/questions/33001798/how-to-protect-serverless-framework-endpoints-from-abuse-dos
https://stackoverflow.com/questions/48206257/protect-data-in-transit-when-two-lambda-communicate-via-aws-sns-simple-notifica
https://stackoverflow.com/questions/48206257/protect-data-in-transit-when-two-lambda-communicate-via-aws-sns-simple-notifica
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/dynamodb/?nc1=h_ls
https://aws.amazon.com/rds/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-serverless-computing/
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-serverless-computing/
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://cloud.google.com/functions
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://github.com/localstack/localstack
https://github.com/localstack/localstack
https://en.wikipedia.org/wiki/Low-code_development_platform
https://en.wikipedia.org/wiki/Low-code_development_platform
https://www.openfaas.com/
https://openwhisk.apache.org/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prop.test
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prop.test
https://www.serverless.com/
https://archive.org/details/stackexchange
https://doi.org/10.1109/icse.2019.00122
https://doi.org/10.1109/icse.2019.00122
https://doi.org/10.1109/saner.2018.8330213
https://doi.org/10.1145/3239235.3239524
https://doi.org/10.1109/esem.2019.8870187
https://doi.org/10.1109/esem.2019.8870187
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3267809.3267815

An Empirical Study on Challenges of Application Development in Serverless Computing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[80] Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going big: A large-scale
study on what big data developers ask. In Proceedings of the 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019. 432–442. https://doi.org/
10.1145/3338906.3338939

[81] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are
developers talking about? An analysis of topics and trends in Stack Overflow.
Empirical Software Engineering 19, 3 (2014), 619–654. https://doi.org/10.1007/
s10664-012-9231-y

[82] Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin Pinzger.
2018. Automatically classifying posts into question categories on Stack Overflow.
In Proceedings of the 2018 IEEE/ACM 26th International Conference on Program
Comprehension, ICPC 2018. 211–21110. https://doi.org/10.1145/3196321.3196333

[83] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: A serverless framework for end-to-end ML workflows. In
Proceedings of the ACM Symposium on Cloud Computing, SoCC 2019. 13–24.
https://doi.org/10.1145/3357223.3362711

[84] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xu-
anzhe Liu. 2020. A comprehensive study on challenges in deploying deep learn-
ing based software. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020. 750–762. https://doi.org/10.1145/3368089.3409759

[85] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu
Wang, and Xuanzhe Liu. 2021. An empirical study on deployment faults of
deep learning based mobile applications. In Proceedings of the 43rd International
Conference on Software Engineering, ICSE 2021. 674–685. https://doi.org/10.1109/
icse43902.2021.00068

[86] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46. https://doi.org/10.1177/
001316446002000104

[87] Alex Cummaudo, Rajesh Vasa, Scott Barnett, John Grundy, and Mohamed Ab-
delrazek. 2020. Interpreting cloud computer vision pain-points: A mining study
of Stack Overflow. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2020. 1584–1596. https://doi.org/10.1145/3377811.3380404

[88] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Jo-
hannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup.
2020. A review of serverless use cases and their characteristics. arXiv preprint
arXiv:2008.11110 (2020).

[89] Lang Feng, Prabhakar Kudva, Dilma Da Silva, and Jiang Hu. 2018. Exploring
serverless computing for neural network training. In Proceedings of the IEEE
11th international conference on cloud computing, CLOUD 2018. 334–341. https:
//doi.org/10.1109/cloud.2018.00049

[90] Sadjad Fouladi, Riad SWahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, fast and slow: Low-latency video processing
using thousands of tiny threads. In Proceedings of the 2017 USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2017. 363–376.

[91] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC 2017. 445–451. https://doi.org/
10.1145/3127479.3128601

[92] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud programming simplified: A berkeley view on serverless
computing. arXiv preprint arXiv:1902.03383 (2019).

[93] J Richard Landis and Gary G Koch. 1977. The measurement of observer
agreement for categorical data. Biometrics 33, 1 (1977), 159–174. https:
//doi.org/10.2307/2529310

[94] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer. 2019. A
mixed-method empirical study of Function-as-a-Service software development
in industrial practice. Journal of Systems and Software 149 (2019), 340–359.
https://doi.org/10.1016/j.jss.2018.12.013

[95] Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang. 2020. Un-
derstanding build issue resolution in practice: Symptoms and fix patterns. In
Proceedings of the ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020.
617–628. https://doi.org/10.1145/3368089.3409760

[96] Sunil Kumar Mohanty, Gopika Premsankar, and Mario Di Francesco. 2018. An
evaluation of open source serverless computing frameworks. In Proceedings
of the IEEE 10th International Conference on Cloud Computing Technology and
Science, CloudCom 2018. 115–120. https://doi.org/10.1109/cloudcom2018.2018.
00033

[97] Stefan Nastic and Schahram Dustdar. 2018. Towards deviceless edge computing:
Challenges, design aspects, and models for serverless paradigm at the edge. In
The Essence of Software Engineering. Springer, Cham, 121–136. https://doi.org/
10.1007/978-3-319-73897-0_8

[98] Robert G. Newcombe. 1998. Interval estimation for the difference between inde-
pendent proportions: Comparison of eleven methods. Statistics in Medicine 17,
8 (1998), 873–890. https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<873::
aid-sim779>3.0.co;2-i

[99] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK: Rapid task provi-
sioning with serverless-optimized containers. In Proceedings of the 2018 USENIX
Annual Technical Conference, ATC 2018. 57–70.

[100] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? A large scale study using Stack Overflow. Empirical Software Engineering
21, 3 (2016), 1192–1223. https://doi.org/10.1007/s10664-015-9379-3

[101] Joel Scheuner and Philipp Leitner. 2020. Function-as-a-Service performance
evaluation: A multivocal literature review. Journal of Systems and Software 170
(2020), 110708. https://doi.org/10.1016/j.jss.2020.110708

[102] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering 25, 4 (1999), 557–572.
https://doi.org/10.1109/32.799955

[103] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul
Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In Proceedings of the 2020
USENIX Annual Technical Conference, ATC 2020. 205–218.

[104] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin Recht, Ion
Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram Venkataraman. 2020.
Serverless linear algebra. In Proceedings of the 2020 ACM Symposium on Cloud
Computing, SoCC 2020. 281–295. https://doi.org/10.1145/3419111.3421287

[105] Davide Taibi, Nabil El Ioini, Claus Pahl, and Jan Raphael Schmid Niederkofler.
2020. Serverless cloud computing (function-as-a-service) patterns: A multi-
vocal literature review. In Proceedings of the 2020 International Conference on
Cloud Computing and Services Science, CLOSER 2020. https://doi.org/10.5220/
0009578501810192

[106] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.
2020. Sequoia: Enabling quality-of-service in serverless computing. In Proceed-
ings of the 2020 ACM Symposium on Cloud Computing, SoCC 2020. 311–327.
https://doi.org/10.1145/3419111.3421306

[107] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking behind the curtains of serverless platforms. In Proceedings
of the 2018 USENIX Annual Technical Conference, ATC 2018. 133–146.

[108] SebastianWerner, Jörn Kuhlenkamp,Markus Klems, JohannesMüller, and Stefan
Tai. 2018. Serverless big data processing using matrix multiplication as example.
In Proceedings of the IEEE International Conference on Big Data, Big Data 2018.
358–365. https://doi.org/10.1109/bigdata.2018.8622362

[109] Xinli Yang, David Lo, Xin Xia, Zhiyuan Wan, and Jian-Ling Sun. 2016. What
security questions do developers ask? A large-scale study of Stack Overflow
posts. Journal of Computer Science and Technology 31, 5 (2016), 910–924. https:
//doi.org/10.1007/s11390-016-1672-0

[110] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing serverless plat-
forms with serverlessbench. In Proceedings of the 2020 ACM Symposium on Cloud
Computing, SoCC 2020. 30–44. https://doi.org/10.1145/3419111.3421280

[111] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael R. Lyu, and Miryung Kim. 2019. An
empirical study of common challenges in developing deep learning applications.
In Proceedings of the 30th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2019. 104–115. https://doi.org/10.1109/issre.2019.00020

[112] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An empirical study on TensorFlow program bugs. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018. 129–140. https://doi.org/10.1145/3213846.3213866

428

https://doi.org/10.1145/3338906.3338939
https://doi.org/10.1145/3338906.3338939
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1145/3196321.3196333
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1109/icse43902.2021.00068
https://doi.org/10.1109/icse43902.2021.00068
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/3377811.3380404
https://doi.org/10.1109/cloud.2018.00049
https://doi.org/10.1109/cloud.2018.00049
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1016/j.jss.2018.12.013
https://doi.org/10.1145/3368089.3409760
https://doi.org/10.1109/cloudcom2018.2018.00033
https://doi.org/10.1109/cloudcom2018.2018.00033
https://doi.org/10.1007/978-3-319-73897-0_8
https://doi.org/10.1007/978-3-319-73897-0_8
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<873::aid-sim779>3.0.co;2-i
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<873::aid-sim779>3.0.co;2-i
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1109/32.799955
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.5220/0009578501810192
https://doi.org/10.5220/0009578501810192
https://doi.org/10.1145/3419111.3421306
https://doi.org/10.1109/bigdata.2018.8622362
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1109/issre.2019.00020
https://doi.org/10.1145/3213846.3213866

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 RQ1: Popularity Trend
	5 RQ2: Difficulty Level
	6 RQ3: Taxonomy of Challenges
	6.1 General Questions (A)
	6.2 Application Design (B)
	6.3 Environment Configuration (C)
	6.4 Low-code Development (D)
	6.5 Application Implementation (E)
	6.6 Application Deployment (F)
	6.7 Non-functional Properties (G)

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

