
0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

1

Evaluating and Improving Unified Debugging
Samuel Benton, Xia Li, Yiling Lou, Lingming Zhang

Abstract—Automated debugging techniques, including fault localization and program repair, have been studied for over a decade.
However, the only existing connection between fault localization and program repair is that fault localization computes the potential
buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault
localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch
execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL
not only improves fault localization for manual repair, but also extends the application scope of automated repair to all possible bugs
(not only the small ratio of bugs that repair systems can automatically fix). However, ProFL only considers one program repair system
(i.e., PraPR), and it is not clear how other existing program repair systems based on different designs contribute to unified debugging.
In this work, we perform an extensive study of the unified debugging approach on 16 state-of-the-art program repair systems for the
first time. Our initial experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified
debugging, such as (1) nearly all 16 studied repair systems positively contribute to unified debugging despite their varying repair
capabilities, (2) repair systems targeting multi-edit patches can bring extraneous noise into unified debugging, (3) repair systems with
more executed/plausible patches tend to perform better for unified debugging, (4) unified debugging effectiveness does not rely on the
availability of correct patches from automated repair, and (5) we propose a new unified debugging technique, UniDebug++, which
localizes over 20% more bugs within Top-1 than state-of-the-art unified debugging technique ProFL (evaluated against four Defects4J
subjects). Furthermore, we conduct more comprehensive studies to extend the above experiments to make the following additional
contributions: we (6) further perform an extensive study on 76.3% additional buggy versions from Defects4J (for Closure and Mockito)
and confirm that UniDebug++ again outperforms ProFL by localizing 185 (out of 395 in total) bugs within Top-1, 14% more than ProFL,
(7) investigate the impact of 33 SBFL formulae on unified debugging and observe that UniDebug++ consistently improves upon all
formulae, e.g., 61% and 53% average improvement on MFR / MAR, (8) demonstrate that UniDebug++ can substantially boost
state-of-the-art learning-based method-level fault localization techniques, (9) extend unified debugging to the statement level for first
time and observe that UniDebug++ localizes 78 (out of 395 in total) bugs within Top-1 (22% more bugs than ProFL) and outperforms
state-of-the-art learning-based fault localization techniques by 30%, and finally (10) propose a new technique, UniDebug+?, based on
detailed patch statistics, to improve upon UniDebug++, e.g., further localizing up to 9% more bugs within Top-1 than UniDebug++.

Index Terms—Automated Program Repair, Fault Localization, Unified Debugging

F

1 INTRODUCTION

With the rapid development of information technology,
software systems have been widely adopted in almost all
aspects of modern society. However, software bugs (also
called software faults in this paper) are inevitable because of
the complexity of modern software systems. Software faults
can cause software systems to crash or perform unexpected
behaviors, both scenarios resulting in disaster, e.g., costing
trillions of dollars in financial loss and affecting billions
of people [1]. In practice, software debugging is essential
for removing bugs from existing faulty software systems.
Manual debugging, however, can be extremely challenging,
tedious, and costly. Such impediments consume over 50%

• Samuel Benton is with the Department of Computer Science, The Univer-
sity of Texas at Dallas, USA.
E-mail: Samuel.Benton1@utdallas.edu

• Xia Li is with the Department of Software Engineering and Game Design,
Kennesaw State University, USA.
E-mail:xli37@kennesaw.edu

• Yiling Lou is with the Department of Computer Science, Purdue Univer-
sity, USA.
E-mail:lou47@purdue.edu

• Lingming Zhang is with the Department of Computer Science, University
of Illinois at Urbana-Champaign, USA.
E-mail:lingming@illinois.edu

• Yiling Lou is the corresponding author.

of the development time/effort [2] and cost the global
economy billions of dollars [3].

To date, a huge body of research effort has been dedi-
cated to automated debugging to relieve developer burdens,
investigating both fault localization [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15] and automated program
repair [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34] techniques.
Fault localization aims to precisely localize buggy elements
within a buggy system based on dynamic and/or static
program analysis, and can automatically produce a ranked
list of suspicious code elements for developers, reducing
their effort for manual bug checking across many forms of
software systems. Classic spectrum-based fault localization
(SBFL) techniques [5], [6], [7], [14] mainly analyze the statis-
tical correlation between code coverage and test outcomes to
infer potential buggy locations. For example, a code element
primarily executed by failed tests is more likely to be suspi-
cious. However, using only coverage information may not
be precise enough. Therefore, researchers further propose
mutation-based fault localization (MBFL) techniques [8],
[9], [35], [36] by further considering the impact informa-
tion between mutated code elements and tests (simulated
via mutations). Recently, machine learning techniques have
been used to combine various dimensions of debugging
information for more powerful fault localization [12], [36],

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

2

[37], [38].
While fault localization still requires manual repair, au-

tomated program repair (APR) aims to directly fix software
bugs automatically with minimal human intervention. A
typical test-driven APR technique takes a faulty program
and its test suite as input and generates program patches
with the end goal to find a patch passing all tests. Due
to its promising future, various APR techniques have been
proposed, including search-based, semantics-driven, and
learning-based techniques [10], [21], [22], [23], [39]. For
more details, please refer to recent surveys on fault local-
ization [40] and APR [41].

Despite extensive research on automated debugging
over the past decades, we still lack practical automated
debugging techniques. Traditional fault localization tech-
niques have been extensively studied in the literature [14],
[15], [42], [43], but there is still no clear consensus about
its effectiveness; meanwhile, although recent learning-based
fault localization techniques can be more powerful, they
usually require massive training data that may not always
be available [12], [44]. Furthermore, it is also rather chal-
lenging for APR techniques to fix all possible bugs – even
state-of-the-art APR techniques [21], [45], [46] can only fix
a small ratio of real bugs (i.e., <20% for Defects4J [47])
automatically.

To enable more practical debugging, the unified debug-
ging approach, ProFL, was recently proposed to unify fault
localization and APR to boost both areas [48], [49]. While
both fault localization and APR have been studied for over
a decade, their only prior connection is that fault localization
is leveraged as a supplier for pointing out potentially buggy
locations for APR to fix. The unified debugging approach
ProFL unifies the two areas in the other direction for the first
time, i.e. leveraging large number of patch execution results
generated during APR (even when APR fails to fix the bug)
to further boost fault localization. The basic intuition is that
if a patch passes some originally failing test(s), the patched
location is very likely to have some close relationship with
the real buggy location (e.g., sharing the same method
or even same line), since otherwise the patch would not
mute the bug impact and pass the originally failing test(s).
Using the recent PraPR [45] APR system, ProFL is able to
substantially boost/outperform state-of-the-art SBFL [6], [7],
[50], MBFL [8], [9], [35], [36], and unsupervised/supervised-
learning-based fault localization [11], [12], [44]. In this way,
given any buggy project, ProFL not only directly returns
the patches when automated repair works, but also provides
improved fault localization hints for manual repair for all
other cases. That is, ProFL not only significantly improves
fault localization for manual repair, but also extends the
application scope of automated repair to all possible bugs (not
only the small portion of bugs that can be automatically
fixed).

Despite this promising direction, the ProFL work only
considers one APR system (i.e., PraPR), while there are
many other available APR systems based on different de-
signs and it is not clear how other APR systems contribute
to unified debugging.

Therefore, to bridge this gap, we conduct the first exten-
sive study of unified debugging on 16 state-of-the-art APR
systems. These 16 systems represent recent public Java APR

systems that execute without requiring specialized data
or infrastructure. These selected systems utilize constraint-
based [19], [20], [51], heuristic-based [21], [22], [23], and
template-based [18], [52], [53] repair approaches seen in
recent repair literature. Furthermore, we use real faults from
Defects4J benchmark suite for our evaluation since it is the
most widely used benchmark in recent fault localization
and APR work (including the unified debugging work [48]).
Our experimental results demonstrate that unified debug-
ging can outperform/boost all existing fault localization
techniques. We also propose two advanced unified debug-
ging techniques and reveal various practical guidelines for
further improving unified debugging and even software
debugging in general.

To summarize, this paper makes the following main
contributions:

• Initial Study Contributions. The conference ver-
sion of this paper presents the first extensive study
of unified debugging using 16 state-of-the-art APR
systems. Our initial study [54] on 224 real bugs
from Defects4J reveals various practical guidelines,
including: (1) nearly all 16 studied APR tools can
positively contribute to unified debugging despite
their varying repair capabilities, (2) APR tools tar-
geting multi-edit patches can bring noise and may
degrade performance for unified debugging, (3) APR
tools with more executed/plausible patches tend to
perform better for unified debugging, and (4) unified
debugging effectiveness does not exclusively rely on
the availability of correct patches from APR.

• Initial Study Technique - UniDebug++. Based on
results from our conference study (evaluated on 224
real bugs from Defects4J), we propose an advanced
unified debugging technique (UniDebug++) to fur-
ther rank tied code elements. From this new strategy,
UniDebug++ localizes over 20% more bugs within
Top-1 than ProFL.

• Extended Study. To enhance unified debugging, we
extend our prior study [54] to 395 real bugs from
Defects4J (i.e., 76.3% more bugs than the initial
conference paper) and make further contributions.
Specifically we: (1) confirm all our initial study find-
ings generalize to the additional faults and UniDe-
bug++ outperforms ProFL by 14% on all 395 De-
fects4J bugs and localizes 185 bugs within Top-1, (2)
show UniDebug++ consistently improves upon all
formulae, e.g., 61% and 53% average improvement
on MFR / MAR, (3) demonstrate that UniDebug++
boosts state-of-the-art learning-based method-level
fault localization techniques, and (4) observe that, at
the statement level, UniDebug++ localizes 78 (out of
395 total) bugs within Top-1 (22% more bugs than
ProFL) and outperforms state-of-the-art statement-
level learning-based fault localization techniques by
30%.

• Extended Study Technique - UniDebug+?. Based
on these extension results, we further propose a new
technique, UniDebug+?, to even further improve
upon UniDebug++, i.e., localizing up to 9% more
bugs within Top-1 than UniDebug++.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

3

Fig. 1: The unified debugging process

2 STUDIED APPROACH

In this section, we first briefly discuss the traditional fault
localization and program repair process (Section 2.1) to
motivate unified debugging. Then, we present the underly-
ing process for unified debugging (Section 2.2) and discuss
variations of the unified debugging technique (Section 2.4).
Lastly, we present a real-world example to further motivate
our study (Section 2.3).

2.1 Fault Localization and Program Repair

Given a buggy program and its failing test suite, test-based
fault localization computes each code element’s probability
to be buggy based on various techniques [5], [8], [12], [55],
[56]. For example, the widely studied spectrum-based fault
localization (SBFL) [5], [6], [7] will collect the dynamic
coverage information for each failing/passing test to com-
pute each code element’s suspiciousness value. In this way,
developers can choose to directly start manual repair with the
help of such suspiciousness information.

Alternatively, developers can also choose to directly per-
form automated program repair (APR) [21], [22], [23]. Typical
APR techniques leverage fault localization techniques to
compute the potential buggy locations for patching, e.g., the
Ochiai [5] SBFL technique has been widely used in recent
APR work, such as PraPR [45], Simfix [21], and CapGen [57].
After the patch generation and validation, all the plausible
patches (i.e., the patches that can pass all tests) are returned
for manual inspection to find the final correct patches (i.e.,
the patches semantically equivalent to developer patches).
In this way, the final correct patches are the only useful
outcome from APR; in fact, even plausible but incorrect
patches are treated as harmful in traditional APR work [51],
since they require time-consuming and tedious manual in-
spection. However, to date, even state-of-the-art APR can
only produce correct patches for a small ratio of real-world
bugs, making APR a waste of resources in all other cases. For
example, the current most effective APR works [17], [45],
[46] cannot even fix 20% of bugs from the widely studied
Defects4J [47] benchmark.

2.2 Unified Debugging

To further boost both the fault localization and APR areas,
unified debugging [48], [49] aims to unify these two areas

from the other direction for the first time. The basic insight
of unified debugging is that the massive patch execution
information from APR (even ones that do not lead to cor-
rect patches) can further help substantially improve fault
localization to facilitate manual repair. In this way, unified
debugging can report correct patches when possible, and
more importantly can also return refined fault localization
for all cases (even the cases without correct patches). Unified
debugging not only extends the application scope of APR to
all possible bugs (not only the bugs that can be automat-
ically fixed), but also provides more precise fault localiza-
tion. For example, ProFL [48], the first unified debugging
technique based on the recent PraPR APR system, signifi-
cantly improves/outperforms various state-of-the-art fault
localization techniques (e.g., SBFL [5], [6], [7], MBFL [8], [9],
[35], [36], and even learning-based techniques [11], [12]).

The basic assumption of unified debugging is that if
a patch can pass some originally failing tests, its patch
location may be closely related to the actually buggy loca-
tions (e.g., sharing the same code element, such as method).
Similarly, if a patch fails some originally passing tests, its
patch location may be closely related to correct locations
since otherwise the passing tests would have failed before
patching [49]. In this way, all generated patches can be
categorized into exactly one the following categories accord-
ing to execution information automatically collected during
patch validation: (1) CleanFix Patches: patches passing on
at least one originally failed test and not failing on any
originally passed test, (2) NoisyFix Patches: patches passing
on at least one originally failed tests but also failing on
some originally passed tests, (3) NoneFix Patches: patches not
impacting the outcome for any originally failed or passed
test, (4) NegFix Patches: patches not passing any originally
failed test but failing on some originally passed tests. Note
that all such patch validation information can be directly
obtained from the studied test-based APR tools. Unified
debugging simply leverages such existing information to
classify each patch into the aforementioned categories.

The overall approach of unified debugging is presented
in Figure 1. Given any buggy program and its test suite,
unified debugging first applies off-the-shelf APR systems to
generate and execute various possible patches. Then, while
existing APR work only returns the correct patches to the
developers, unified debugging further utilizes the execution

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

4

Suspicious Method SBFL PraPR Kali-A TBar UniDebug+
PolyhedronsSet.<init> 1.0 NoneFix Unmodified Unmodified NoneFix
PolygonsSet.compute... 1.0 NoneFix CleanFix NoneFix CleanFix
PolygonsSet.followLoop 1.0 NoneFix NoneFix Unmodified NoneFix
AVLTree.getNotSmaller 1.0 NoneFix NoneFix NoneFix NoneFix

TABLE 1: Motivating example of unified debugging from
Math-32

information for all patches and categorizes them into rel-
evant categories discussed in the previous paragraph. For
each code element (e.g., method), unified debugging adopts
the best category from its corresponding patches according
to a predefined order (i.e., CleanFix > NoisyFix > NoneFix
> NegFix) [49].

Finally, all the elements are reranked first according to
their patch categories, e.g., all elements with the Clean-
Fix category are ranked higher than all elements with the
NoisyFix category; after that, the elements within the same
category are then further reranked in descending order by
their initial suspiciousness scores computed by any existing
fault localization technique (i.e., Ochiai [5] by default). In
this way, the developers will obtain largely refined fault
localization for all possible bugs (even including the case
where no correct or plausible patch is found). We refer to
the implementation of the core unified debugging approach
previously outlined as UniDebug for the duration of this
paper. Note that the basic UniDebug technique can be
applied with any existing generate-and-validate automated
program repair system.

2.3 Motivating Example
In this section, we use Math-32 from Defects4J (V1.0.0)

[47], a widely used real-world Java bug benchmark, to
motivate our study. Math-32 denotes the 32nd buggy ver-
sion of Apache Commons Math project. The bug is located
in method computeGeometricalProperties of Class
PolygonsSet.

Table 1 shows four example suspicious methods includ-
ing the actual buggy method highlighted in gray. Please note
that we disregard the arguments since the class and method
names can sufficiently distinguish them.

In the table, Column “SBFL” indicates the suspicious-
ness score of each method according to the state-of-the-art
SBFL technique Ochiai [5] with aggregation strategy [44],
which aggregates the maximum suspiciousness values from
statements to methods and has been demonstrated to sub-
stantially outperform raw method-level SBFL. Columns
“PraPR”, “Kali-A”, and “TBar” represent the UniDebug
unified debugging approach using the patch execution in-
formation from APR systems PraPR, Kali-A, and TBar, re-
spectively. The patch category information for each method
is included in the table. Unmodified, hereby referred to as
Non-Modify, represents a new patch category implying that
these code elements are never patched by an APR tool.
Lastly, Column “UniDebug+” presents the technique simply
using all patches from the prior three APR systems. From
the motivating example, we have the following interesting
findings.

First, unified debugging using other APR systems can
have promising fault localization results even when the
PraPR system used by ProFL cannot help improve the
performance. For example, Kali-A can directly rank the
buggy method at the 1st location, while both SBFL and

ProFL rank the bug at the 4th location. Figure 2 represents
the patch generated by Kali-A (left side) and the correct
patch provided by developers (right side). From the patches,
we found that Kali-A generates a patch by changing the
buggy conditional statement into if (false) which is
useless for fixing the real bug; however, this patch does help
pinpoint the actual bug location, demonstrating the gen-
erality of unified debugging for all possible APR systems.
This finding motivates us to perform an extensive study
to investigate the effectiveness of different APR systems
for unified debugging. Second, different APR systems have
different unified debugging performances and combining
them may potentially result in even more powerful unified
debugging. Shown in the last column of Table 1, simply
combining all patches generated by different APR systems
can also localize the bug within Top-1.

2.4 Unified Debugging Variants
Shown in our motivating example (Section 2.3), leveraging
UniDebug on one particular program repair tool may not
always be able to sufficiently distinguish between elements
with somewhat similar repair execution information, and
it is promising to consider multiple repair tools together.
Therefore, we further consider a few extension points for
the core unified debugging technique and describe such
extension points in the following subsections.

2.4.1 The Use of Multiple APR Tools
The foundation of such extension points (hereby referred to
as variants) relies on using the repair execution information
from multiple APR tools. UniDebug, as outlined in Section
2.2, employs a single repair tool, only using the given tool’s
patch repair information. Rather than using the patch repair
information generated from a single APR tool, the unified
debugging technique can be adjusted to adopt the overall
best category from multiple employed tools (see Section 2.3
and Table 1). In this way, (1) we can leverage inherent
advantages contained within a wide variety of APR tools
and (2) we mitigate any potential biases / overfitting issues
inherent to individual tools. Beyond the usage of repair
information from multiple APR tools, the unified debugging
approach continues unchanged. We refer to this variant
as UniDebug+ and further investigate its effectiveness in
Section 4.4.

2.4.2 Including Additional Refined Ranking Features
The final phase of the unified debugging approach reranks
all elements according to each element’s suspiciousness
value and patch execution information. For UniDebug, this
reranking utilizes (1) the element’s aggregated patch cate-
gory and (2) the element’s suspiciousness value. This simple
strategy however frequently results in elements earning the
same rank (e.g., a tie) without any further way to distinguish
buggy elements from correct elements, even if they have
wildly different detailed repair execution results (e.g., with
different number of tools and patches being able to pro-
duce the best patch category). As these elements cannot be
further distinguished, they remained tied which degrades
overall effectiveness due to the ranking scheme employed
by unified debugging and similar fault localization studies.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

5

/** File = PolygonsSet.java */
protected void computeGeometricalProperties() {

...
if (v.length == 0) {

final BSPTree<Euclidean2D> tree = getTree(false);
- if ((Boolean) tree.getAttribute()) {
+ if (false) {

// the instance covers the whole space
setSize(Double.POSITIVE_INFINITY);
setBarycenter(Vector2D.NaN);

...
}

(a) Kali-A Math-32 CleanFix patch

/** File = PolygonsSet.java */
protected void computeGeometricalProperties() {

...
if (v.length == 0) {

final BSPTree<Euclidean2D> tree = getTree(false);
- if ((Boolean) tree.getAttribute()) {
+ if (tree.getCut() == null && (Boolean) tree.getAttribute()) {

// the instance covers the whole space
setSize(Double.POSITIVE_INFINITY);
setBarycenter(Vector2D.NaN);

...
}

(b) Math-32 developer patch

Fig. 2: Generated patch of Kali-A and developer patch for Math-32

Thus, the following variants use even more patch repair in-
formation to break these ties and more precisely distinguish
buggy elements from correct elements.

One variant involves utilizing the number of tools
which produce an element’s best patch category (Column
“Tool Freq.” in Table 2). Our intuition is that, for quality
patches, the likelihood of an element actually being faulty
increases as more distinct tools also generate patches of
equal quality. Thus, the ranking scheme is adjusted to the
following: sorted by (1) aggregated element patch category,
(2) the element’s suspiciousness (descending), and (3) the
frequency of the aggregated element patch category gen-
erated by all tools (descending). Note that this variant
is the same as UniDebug+ except that it further uses (3)
to break the ties. In this paper, we refer to this variant
as UniDebug++. An example of how UniDebug++ further
distinguishes buggy elements from correct elements is de-
scribed in Table 6 and further variant details are discussed
in Section 4.4.

Again, the idea behind unified debugging is code ele-
ments involved in high quality repair patches are likely to
be incorrect. Consequently, the confidence in an element’s
incorrectness increases as more high quality patches are
discovered for the element. To this end, we further explore
the use of patch frequency as a ranking feature for unified
debugging. Specifically, the number of patches categorized as the
element’s aggregated patch category is used as a ranking feature
to further break ties (see Column “Patch Freq.” in Table 2).
The ranking scheme is further modified as follows: sorted
by (1) aggregated element patch category, (2) the element’s
suspiciousness (descending), and (3) the number of gener-
ated patches categorized as the aggregated element patch
category (descending). Note that this variant is the same as
UniDebug+ except that it further uses (3) to break the ties.
We call this variant UniDebug+? and further discuss details
in Section 4.8.

Table 2 delineates the exact differences between all uni-
fied debugging variants considered in this paper.

Number of Ranking Features
Employed Tools Category Susp. Tool Freq. Patch Freq.

UniDebug1 1 Yes Yes No No
UniDebug+ ≥ 2 Yes Yes No No
UniDebug++ ≥ 2 Yes Yes Yes No
UniDebug+? ≥ 2 Yes Yes No Yes
1 Note that we consider as ProFL an instance of UniDebug which specifically utilizes

PraPR. Thus, in the context of UniDebug, PraPR and ProFL are the same and
interchangeable.

TABLE 2: Differences between unified debugging variants

3 STUDY DESIGN

3.1 Research Questions

As part of this paper’s original publication, we investigated
the following research questions (but now with 76.3% more
studied bugs):

• RQ1: How does unified debugging perform with all
studied APR systems?

• RQ2: How do unmodified code elements during
APR impact unified debugging?

• RQ3: How does unified debugging correlate with
program repair effectiveness?

• RQ4: How do we further advance state-of-the-art
unified debugging with all studied APR systems via
UniDebug++?

As an extension of the original paper, we aim to investigate
these additional research questions:

• RQ5: How does unified debugging perform with
different SBFL formulae?

• RQ6: How does unified debugging boost learning-
based fault localization?

• RQ7: How does unified debugging perform at the
statement level?

• RQ8: How does a new advanced ranking strategy
UniDebug+? improve unified debugging?

3.2 Research Question Motivations

In short, the following are the motivations for our research
questions (RQ): RQ1 assesses the effectiveness of the uni-
fied debugging with different state-of-the-art APR tools on
real-world systems. Since many of the studied APR tools
may not generate any patch for certain code elements,
RQ2 empirically (1) examines the impact of code elements
unmodified/unpatched by APR tools and (2) investigates
what patch category is most optimal for such elements. As
different APR tools may have totally different capabilities
for fixing bugs, RQ3 further examines the impact of APR
effectiveness (e.g., generating correct patches) on unified
debugging effectiveness. Then, RQ4 examines how to fur-
ther improve the unified debugging approach for enhanced
fault localization via considering APR tool frequency infor-
mation.

As the extension of the original conference paper, we also
additionally consider the following RQs besides augment-
ing all our first four RQs with 76.3% more subjects. More
specifically, RQ5 examines the fragility of unified debugging

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

6

Tool Category Tools
Constraint-based ACS, Cardumen, Dynamoth

Heuristic-based Arja, GenProg-A, jGenProg, jKali,
jMutRepair, Kali-A, RSRepair-A, Simfix

Template-based AVATAR, FixMiner, kPar, PraPR, TBar

TABLE 3: Repair systems studied

effectiveness with respect to state-of-the-art SBFL formu-
lae. Given the inclusion of repair information in the fault
localization process, RQ6 examines how such information
may also boost existing state-of-the-art learning-based fault
localization techniques (including both supervised-learning-
based and unsupervised-learning-based ones). In addition
to the method-level fault localization, RQ7 also assesses the
feasibility of the unified debugging approach for statement-
level fault localization, which is also quite important for
automated debugging. Lastly, RQ8 examines how to further
improve the unified debugging approach via considering
the detailed patch frequency information. These research
questions are designed to evaluate unified debugging in
different usage scenarios and in a more extensive way.

3.3 Experimental Setup

For this study, we considered all 16 program repair systems
accessible from a recent study [58]. Furthermore, we also
considered the recent PraPR repair system [45] which the
initial unified debugging work is based on. Table 3 shows
the breakdown of all the APR systems studied, including:
heuristic-based - Arja [23], GenProg-A [23], jGenProg [22],
jKali [22], jMutRepair [22], Kali-A [23], RSRepair-A [23],
and Simfix [21]; constraint-based - ACS [51], Cardumen
[20], and Dynamoth [19]; and template-based - AVATAR
[18], FixMiner [52], kPar [53], TBar [17], and PraPR [45].
We manually modified all studied APR systems to col-
lect the detailed patch execution information required by
unified debugging and ensured our modified versions did
not impact underlying tool functionality. Each system used
original time settings suggested by the original papers.

We perform the study on the widely-used benchmark
Defects4J 1.2.0 [47], which consists of 395 real-world bugs
from six software systems. Detailed statistics are shown in
Table 4. However, since many studied APR systems have
been implemented to target version 1.0.0 (and older) of
Defects4J, we found that most of them (e.g., CapGen, ACS,
Arja, and GenProg-A) do not natively support or cannot suc-
cessfully execute Closure or Mockito. Therefore, all studied
tools are evaluated against the four core subjects (i.e., Chart,
Time, Lang, and Math); in addition, TBar, kPar, AVATAR,
FixMiner, and PraPR are evaluated on subjects Closure and
Mockito.

Note that the paper’s original publication (RQs 1-4)
considered only core subjects (Chart, Time, Lang, and
Math) while this paper’s new material (e.g., RQs 5-8 and
Section 4.1.4) additionally consider extra subjects (Closure
and Mockito).

Each tool was executed using the same JDK version
found in the tool’s original publication, allowing us to ob-
tain repair execution results as close as possible to the tool’s
original results. Thus, in our experiments, we ultimately
utilized two JDK versions, again as dictated by each repair
system’s original publication, JDK 1.8.0.242 (hereby referred

Project Name # Bugs # Tests LOC
Chart JFreeChart 26 2,205 96K
Lang Apache Lang 65 2,245 22K
Math Apache Math 106 3,602 85K
Time Joda-Time 27 4,130 28K

Mockito Mockito framework 38 1,366 23K
Closure Google Closure compiler 133 7,927 90K

Total 395 21,475 344K

TABLE 4: Studied bugs from Defects4J v1.2.0

to as JDK 1.8) and JDK 1.7.0.80 (hereby referred to as JDK
1.7). Systems Simfix and Dynamoth executed using JDK
1.8 exclusively. Systems Cardumen, jGenProg, jKali, and
jGenProg executed using JDK 1.8 and validated system test
suites with JDK 1.7. All other systems executed using JDK
1.7 exclusively.

All our experiments (except for Section 4.7) utilized
the following environment: 36 3.0GHz Intel Xeon Platinum
Processors, 60GBs of memory, and Ubuntu 18.04.4 LTS op-
erating system. As part of our original conference paper’s
extension, we recollect the data for Section 4.7. This rec-
ollection used the following environment: 56 2.0GHz Intel
XeonCPU E5-2660 v4 processors, 225GBs of memory, and
Ubuntu 14.04.6 LS operating system.

3.4 Implementation Details

3.4.1 Configurations

Although unified debugging can be used to refine any exist-
ing fault localization technique, by default, the original uni-
fied debugging work, ProFL, utilizes APR to refine state-of-
the-art SBFL technique, Ochiai [50] with aggregation strat-
egy [44]. Actually, the original ProFL work demonstrates
that the basic unified debugging approach has consistent
performance for refining different state-of-the-art fault lo-
calization techniques. Therefore, in this paper, we also focus
on using Ochiai (with aggregation) to investigate the impact
of different repair systems. Meanwhile, we investigate the
impact of 33 total SBFL formulae on our improved unified
debugging in RQ5.

Following the original ProFL work, this study primar-
ily focuses on method-level fault localization (i.e., localiz-
ing potential buggy methods), as researchers have demon-
strated that class-level fault localization can be too coarse-
grained [43] while statement-level fault localization can be
too fine-grained and miss necessary contextual information
helpful with later manual program repair [42]. Note that in
Section 4.7, we further investigate unified debugging for
statement-level fault localization, which has been widely
leveraged for automated program repair [10], [21], [22], [23],
[39], [45], [59].

3.4.2 Non-Modify Category

For the original ProFL work, the used PraPR repair sys-
tem [45] is extremely fast due to the bytecode-level ma-
nipulation and can generate patches for almost all possible
suspicious methods, i.e., methods executed by failed tests
(since methods not executed by failed tests should not be
responsible for the current test failures). However, for all
other APR tools, there may exist many suspicious methods
without any patch, since it is expensive for APR tools to
generate patches for every method. Therefore, besides the

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

7

four categories of methods mentioned in Section 2.2, we cre-
ate a new category, Non-Modify, to represent the methods
that do not receive any patch for a specific APR system. It is
unclear how this new category compares with the other four
categories studied in the original unified debugging work.
Therefore, we explore the impact of ranking this new Non-
Modify category within the existing four ProFL categories
in Section 4.2. Note that as the default setting, we put Non-
Modify alongside the NegFix category since the plurality of
all patches fall into the NegFix category (thus the majority of
Non-Modify methods may also fall into the NegFix category
if they had been generated with patches).

3.4.3 Repair Tool Integration with ProFL
The original ProFL tool has been implemented as a publicly
available Maven plugin. We obtained the original ProFL
source code from the authors and analyzed the interface
between ProFL and its underlying APR system. Then, we
modified all 16 studied APR system to produce detailed
patch execution information consistent with the original
ProFL interface (e.g., regarding the patch location, failing
and passing tests for each patch). In this way, we can
safely replace the original PraPR system with any other
studied APR systems for our study. Please note that we also
augment the original ProFL code to handle the new Non-
Modify method category.

3.5 Evaluation Metrics
Following prior work [11], [12], [44], we measure the num-
ber of bugs localized within Top-1, Top-3, and Top-5 posi-
tions as the primary metrics for this study. The reason is that
researchers have observed that most developers will abort
automated debugging tools if they cannot return the actual
buggy elements within the Top-5 positions [43]. Specifically,
given a set of elements (e.g., method or statement) which
tie for the same rank, each element is assigned the worst
rank of the tied elements, following prior work [12], [36],
[48]. Furthermore, we also present the mean first rank
(MFR) and mean average rank (MAR) results widely used in
prior fault localization [12], [36] and unified debugging [48]
work. More specifically, for precise localization of all buggy
elements of each bug, we compute the average ranking of all
the buggy elements for each bug; MAR is simply the mean
of the average ranking of all bugs. Similarly, for bugs with
multiple buggy elements, the localization of the first buggy
element is critical since the remaining buggy elements may
be directly localized after that; therefore, we use MFR to
compute the mean of the first buggy element’s rank for each
bug.

4 RESULT ANALYSIS

4.1 RQ1 - Performance of Unified Debugging with Dif-
ferent APR Systems
In this subsection, we first investigate the effectiveness of
unified debugging on all 16 studied APR systems against
four of studied subjects (i.e., Lang, Chart, Time and Math
from the Defects4J benchmark). All 16 considered APR tools
have been explicitly designed to execute or are natively
compatible with these four core subjects (i.e. from each

tool’s original paper). Thus we explicitly focus on these four
Defects4J subjects (totaling 224 bugs) which represent real-
world scenarios where many APR tools can successfully
execute on a system. Then, we further study the subset of
the studied APR systems compatible with all six Defects4J
subjects on all the 395 bugs.

4.1.1 Experimental Results on Core Subjects
Figure 3 shows the fault localization results on these four
subjects in terms of the Top-1, Top-3, Top-5, MFR, and
MAR metrics. The upper sub-figure represents the Top-
N results and bottom sub-figure indicates the MFR/MAR
results. Each bar in both sub-figures represents different
APR systems. Note that we use the default treatment for the
Non-Modify category which inserts such methods within
the NegFix category, i.e., CleanFix > NoisyFix > NoneFix
> NegFix = Non-Modify (discussed in Section 3.4.2). Also
note that the 16 repair systems in this figure are ordered
chronologically with respect to the date for each publication
following an existing APR study [58]. We also include the
results of state-of-the-art SBFL (i.e., Ochiai with aggregation)
and the first unified debugging technique (i.e., ProFL which
uses the program repair tool PraPR) for comparison (Note
that ProFL has been demonstrated to outperform/improve
all state-of-the-art fault localization [48], [49]). From Fig-
ure 3, we have the following observations. First, with most
APR systems unified debugging performs better than state-
of-the-art SBFL! For example, in terms of Top-1, 15 out of
16 tools help improve SBFL and only Arja fails to meet
the initial SBFL results. That said, Arja still localizes 74
faults within Top-1 which is fairly close to the SBFL result.
This finding indicates the broad applicability of the unified
debugging approach. Second, even though existing APR
study [58] has observed that more recent APR systems can
fix more bugs than earlier systems, there is no obvious
trend showing that unified debugging with more recent (i.e.,
chronologically later) APR systems can help localize more
bugs than earlier ones. This finding demonstrates that APR
systems’ capability to produce correct patches is not highly
correlated to the unified debugging effectiveness in fault
localization. Lastly, different results of the 16 APR systems
indicate that each APR system has its own advantages
and disadvantages for unified debugging. The potential
reason is that some tools have exclusive abilities to repair
various classes of bugs by leveraging different algorithms
to generate patches, incurring various levels of effectiveness
for fault localization. This finding further motivates us to
combine multiple APR systems to advance state-of-the-art
unified debugging (studied in Sections 4.4 and 4.8).

Finding 1: Despite their varying repair capabilities,
almost all the studied 16 APR systems individually
boost state-of-the-art SBFL and contribute to unified
debugging.

4.1.2 Qualitative Analysis
Now we perform a detailed qualitative analysis to
investigate the different performance of different APR
systems. Table 5 shows a subset of the unified debugging

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

8

86 150 171
78

155 174
85

146
169

96 153 172

87

153
175

90

152
172

93 150 172

89

145
170

77

144
169

85 151 170
74

153 173101

153
171

94 152 170

96

153 17396

154
173

104 165 183
76

145
170

0

50

100

150

200

Top-1 Top-3 Top-5

jGenProg GenProg-A jMutRepair kPar RSRepair-A jKali Kali-A Dynamoth ACS Cardumen Arja Simfix FixMiner AVATAR TBar PraPR

SBFL

Core Defects4J Subjects
Top-N vs. Tools

5.46 6.75

5.51
6.77

5.52

6.80

5.38 6.69

5.40
6.71

5.40

6.66

5.50 6.78

5.54
6.79

5.62

6.86

5.46 6.74

5.50
6.76

5.52

6.92

5.39 6.70

5.19
6.51

5.20

6.52

4.66 5.96

5.60
6.85

0

2

4

6

8

MFR MAR

jGenProg GenProg-A jMutRepair kPar RSRepair-A jKali Kali-A Dynamoth ACS Cardumen Arja Simfix FixMiner AVATAR TBar PraPR

SBFL

Core Defects4J Subjects
MFR / MAR vs. Tools

Fig. 3: UniDebug results with all studied APR systems on core Defects4J subjects

results with different APR systems from Math-77. Note
that we also include the results for UniDebug, which
simply uses all patches from different APR systems.
Column “EID” describes the ID for each method.
Column “Category” represents the category computed
for each method based on each tool or technique. Column
“Rank” describes where each method ranks in the final
results for the given tool or technique. In this table,
actual buggy elements are highlighted in gray. Math-77
fails on two tests, testBasicFunctions within class
ArrayRealVectorTest and testBasicFunctions
within class SparseRealVectorTest, both from the
org.apache.commons.math.linear package. The
buggy methods for Math-77 involve modifications of
methods e4 and e5, according to developer patch in
Figure 4. According to traditional SBFL, all five methods tie
and consequently rank 5th (according to the worst ranking).
We next discuss the performance of three example APR
systems for unified debugging on Math-77:

TBar is able to generate a CleanFix patch by exclusively
modifying method e4, shown in Figure 5. This CleanFix
patch successfully passes one of the originally failed tests
and passes every other test. Even though this patch is not
a correct patch, it still helps boost the rank of one buggy
method to Top-1 since the patch shares the same location
with the bug and thus is able to positively mute the bug
impact via modifying the return value. This further demon-
strates the effectiveness of unified debugging, boosting an
actual buggy method to Top-1 with an incorrect patch.

RSRepair-A generates 43 NegFix and 355 NoneFix patches
across 14 unique methods for this bug. RSRepair-A pro-
duces NoneFix patches for all five methods in Table 5. From
this categorization, e1 - e5 are ranked the same as the SBFL
results. Note that, in this case, although RSRepair-A was
not able to improve SBFL, it will not deteriorate the fault
localization results when combining with the more effective

TBar. This is because when putting all patches together,
methods with higher patch categories have precedence over
lower patch categories (i.e. e4’s category will remain Clean-
Fix).

Arja is a rather interesting case. It actually produces many
incorrect CleanFix patches for Math-77, including all five
suspicious methods shown in Table 5. We were surprised
by the fact that Arja can produce so many CleanFix patches
since they are usually hard to generate. Digging into various
such patches, we found that Arja specifically targets multi-
edit patches (i.e., each patch modifies multiple program
locations). For example, one such CleanFix patch is shown in
Figure 6. In this way, if any part of the multiple edits within
a multi-edit patch makes some failing tests to pass, the patch
can potentially be CleanFix even if other edits do not oth-
erwise affect functionality. This leads unified debugging to
associate all modified methods of the patch with the Clean-
Fix category. Furthermore, such noise incurred by multi-edit
APR systems can also be rather harmful when combining
different APR systems for unified debugging. For example,
shown in the last column of Table 5, UniDebug+ also cannot
distinguish the five suspicious methods as they all fall into
the CleanFix category due to Arja’s inclusion. Therefore, we
exclude all such multi-edit APR tools (i.e., Arja, GenProg-A,
and RSRepair-A) when combining different APR systems
for all unified debugging variants to remove unnecessary
noise.

Finding 2: APR systems specifically targeting multi-
edit patches can bring noise into unified debugging, as
each multi-edit patch involves multiple modifications
and many modifications are not helpful in muting the
bug impacts even if the patch can pass some originally
failed test(s).

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

9

EID Suspicious Method SBFL TBar RSRepair-A Arja UniDebug+
Susp. Rank Category Rank Category Rank Category Rank Category Rank

e1 AbstractRealVector:getL1Norm()D 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5
e2 AbstractRealVector:getNorm()D 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5
e3 ArrayRealVector:getL1Norm()D 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5
e4 ArrayRealVector:getLInfNorm()D 0.707 5 CleanFix 1 NoneFix 5 CleanFix 5 CleanFix 5
e5 OpenMapRealVector:getLInfNorm()D 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5

TABLE 5: UniDebug+ with different APR systems for Math-77

/** File = ArrayRealVector.java */
public double getLInfNorm() {

double max = 0;
for (double a : data) {

- max += Math.max(max, Math.abs(a));
+ max = Math.max(max, Math.abs(a));

}
return max;

}

(a) Modifications for ArrayRealVector.java

/** File = OpenMapRealVector.java */
- public double getLInfNorm() {
- double max = 0;
- Iterator iter = entries.iterator();
- while (iter.hasNext()) {
- iter.advance();
- max += iter.value();
- }
- return max;
- }

(b) Modifications for OpenMapRealVector.java

Fig. 4: Correct developer patch for Math-77

/** File = ArrayRealVector.java */
public double getLInfNorm() {

double max = 0;
for (double a : data) {

max += Math.max(max, Math.abs(a));
}

- return max;
+ return getDimension();
}

Fig. 5: TBar’s incorrect CleanFix patch for Math-77

4.1.3 Quantitative Analysis

Since the capability to produce correct patches is not highly
correlated with unified debugging effectiveness, we fur-
ther perform detailed quantitative analysis to explore what
factors of APR systems are highly correlated to the ef-
fectiveness of unified debugging. Figure 7 represents the
correlation analysis between different factors of APR sys-
tems and representative fault localization metrics (i.e., Top-
1 and MFR). Note that we excluded APR systems targeting
multi-edit patches. In this figure, “TotalPatch” represents the
number of all executed compilable patches generated from
each APR tool, “MethodByTotal” represents the number of
unique methods modified by all executed patches, “Plausi-
blePatch” represents the number of plausible patches gen-
erated by each tool, and “MethodsByPlausible” represents
the number of unique methods covered by the plausible
patches. Within each sub-figure, each data point represents
one APR system, and we perform Pearson Correlation
Coefficient analysis [60] at a 0.05 significance level. From
this figure, we observe that APR systems tend to perform
significantly better for unified debugging when executing
more patches for more methods and/or producing more
plausible patches for more methods. The finding is statis-
tically significant for all sub-figures at the significance level
of 0.05. Although the finding is surprisingly uniform, this
makes intuitive sense since APR systems patching more
code elements tend to accumulate more information for
debugging. This finding suggests future APR systems to
explore more diverse patches for more powerful unified
debugging, and also calls for research for faster patch exe-
cution (otherwise APR systems cannot afford massive patch

executions).

Finding 3: APR systems executing more patches
across code elements and/or producing more plausi-
ble patches tend to perform better for unified debug-
ging, calling for future research on fast & exhaustive
patch exploration.

4.1.4 Experimental Results on All Subjects

In this section, we investigate the performance of unified
debugging on two additional subjects, i.e., Closure and
Mockito. Note that this section’s material reflects material
not present in the paper’s original publication. As only a
minor subset of considered APR tools successfully run these
subjects (PraPR, kPar, TBar, AVATAR, and FixMiner), this
subsection assesses the effectiveness of unified debugging
where a limited selection of APR tools are applicable. Thus
the investigation into these subjects warrants its own sub-
section.

We now present the results of UniDebug on Closure
and Mockito in Figure 8. From this figure, we observe
mixed results compared to core subject effectiveness; some
tools improve SBFL effectiveness while others degrade
SBFL effectiveness. For example, PraPR localizes 15 more
faults within Top-1 than SBFL while TBar localizes 2 less
faults within Top-1. We further inspect cases where SBFL
effectiveness worsens and find that some tools generate
more higher-quality patches for non-buggy elements than
buggy code elements on Closure and Mockito, resulting in
unstable performance on these two subjects. For example,
in Mockito-2, the suspiciousness value of the buggy method
org.mockito.internal.util.Timer:<init>(J)V is
0.42 as computed by SBFL Ochiai which is greater than any
other method. However, when TBar attempts to fix this bug,
it generates CleanFix patches for one non-buggy method
org.mockito.Mockito:after(J)Lorg/mockito/
verification/VerificationAfterDelay;, but does
not generate any patches for the buggy method. Therefore,
based on such misleading patch execution information,

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

10

/** File = ArrayRealVector.java */
public double getLInfNorm() {

double max = 0;
for (double a : data) {

max+=Math.max(max,Math.abs(a));
}

- return max;
+ return data.length;
}

(a) Modifications for ArrayRealVector.java

/** File = OpenMapRealVector.java */
public double getLInfNorm() {

double max = 0;
Iterator iter=entries.iterator();
while (iter.hasNext()) {

iter.advance();
max += iter.value();

}
- return max;
+ return virtualSize;
}

(b) Modifications for OpenMapRealVector.java

/** File = AbstractRealVector.java */
public double getL1Norm() {

double norm = 0;
Iterator<Entry> it = sparseIterator();
Entry e;

+ while (it.hasNext()&&(e=it.next())!=null){
+ norm += Math.abs(e.getValue());
+ }

while (it.hasNext()&&(e=it.next())!=null){

norm += Math.abs(e.getValue());
}
return norm;

}

(c) Modifications for AbstractRealVector.java

Fig. 6: An incorrect Arja CleanFix patch (with three modified methods) for Math-77

●

●

●

●

●●

●

●

●

●
●

●

●

R = 0.81

p = 0.00089

80

90

100

110

102 103 104 105 106

TotalPatch

To
p1

●

●

●

●

●●
●

●

●

●
●

●

●

R = 0.69

p = 0.0095

80

90

100

110

101.5 102 102.5 103 103.5 104

MethodByTotal

To
p1

●

●

●

●

● ●
●

●

●

●
●

●

●

R = 0.84

p = 0.00028

80

90

100

110

100.5 101 101.5 102 102.5 103

PlausiblePatch

To
p1

●

●

●

●

●●

●

●

●

●
●

●

●

R = 0.91

p = 1.4e−05

80

90

100

110

100 100.5 101 101.5 102

MethodsByPlausible

To
p1

●

●

●●

●●

●●

●
●

●

●

●R = − 0.68

p = 0.01

5.0

5.5

102 103 104 105 106

TotalPatch

M
F

R

●

●

●●

●●

●●

●
●

●

●
●R = − 0.66

p = 0.014

5.0

5.5

6.0

101.5 102 102.5 103 103.5 104

MethodByTotal

M
F

R

●

●

●●

● ●

●●

●
●

●

●

●R = − 0.86

p = 0.00018

5.0

5.5

100.5 101 101.5 102 102.5 103

PlausiblePatch

M
F

R

●

●

●●

●●

● ●

●
●

●

●
●R = − 0.71

p = 0.0061

5.0

5.5

6.0

100 100.5 101 101.5 102

MethodsByPlausible

M
F

R

Fig. 7: Correlation analysis

43 76 95
44

79
101

35

76

95

41 76 94

58

93
109

43

78

98

0

25

50

75

100

125

Top-1 Top-3 Top-5

kPar FixMiner AVATAR TBar PraPR SBFL

Additional Defects4J Subjects
Top-N vs. Tools

33.15 44.56

32.98
44.42

33.36

44.68

33.28 44.61
14.73

24.75

33.18

44.50

0

10

20

30

40

50

MFR MAR

kPar FixMiner AVATAR TBar PraPR SBFL

Additional Defects4J Subjects
MFR / MAR vs. Tools

Fig. 8: UniDebug results with all studied APR systems on
additional Defects4J subjects

unified debugging ranks this non-buggy method higher
than the buggy method.

The results of the effectiveness of UniDebug on all six
projects are provided in Figure 9. Note that we are able
to present the results of all APR tools on all subjects since
unified debugging simply degrades to SBFL if APR tools
cannot produce any patch for a specific bug. Rather similar
to the results on four core subjects shown in Section 4.1.1,
we can observe that 15 out of 16 APR tools (excluding Arja)
outperform the traditional SBFL for UniDebug according to

Figure 9. For Top-1, Arja is the sole tool underperforming
SBFL but it still localizes 117 bugs in Top-1, only 2 less than
SBFL. Similarly, ACS slightly underperforms SBFL in Top-
3 (222 vs 223) while no tool underperforms SBFL in Top-5.
These results on the six Defects4J subjects leads us to the
following finding.

Finding 4: The experimental results on all 395 bugs
from Defects4J 1.2.0 are overall consistent with the
experimental results on 224 bugs from the four core
Defects4J subjects.

Note that we use all the 395 bugs from Defects4J in
the experiments of all our following RQs unless otherwise
specified.

4.2 RQ2 - Impacts of Non-Modify Code Elements on
Unified Debugging
As discussed in Section 3.4.2, we add one new patch cat-
egory, Non-Modify, which represents suspicious methods
that are not associated with any repair patch for a given tool.
The first research question has demonstrated the effective-
ness of default unified debugging setting on 16 APR systems
by treating Non-Modify equivalently as the fourth patch
category, NegFix. In this research question, we further eval-
uate the unified debugging effectiveness when casting the
Non-Modify category into each of the four different ProFL
categories. Figure 10 represents the Top-1 and MFR results
of all 16 APR systems on all the 395 studied bugs from
Defects4J with such four settings represented with lines in
different colors. From the figure we observe that for most
systems, casting Non-Modify code elements into the NegFix
category leads to better Top-1 and MFR than casting them
into any other category. For example, Simfix can localize 144
bugs within Top-1 when casting Non-Modify into NegFix
category, and can only localize 139/116/98 bugs within Top-
1 when casting Non-Modify into NoneFix/NoisyFix/Clean-

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

11

129 228 267

121

233
270

128

224

265

139 229 267

130

231
271

133

230

268

136 228 268

132

223
266

120

222

265

128 229 266
117

231
269143

230

268

138 231 271

131

229
268

137

230
267

162 258 292

119

223
265

0

100

200

300

Top-1 Top-3 Top-5

jGenProg GenProg-A jMutRepair kPar RSRepair-A jKali Kali-A Dynamoth ACS Cardumen Arja Simfix FixMiner AVATAR TBar PraPR

SBFL

All Defects4J Subjects
Top-N vs. Tools

18.80 24.67

18.83
24.68

18.84

24.70

17.42 23.09

18.77
24.65

18.77

24.62

18.82 24.69

18.85
24.69

18.89

24.73

18.81 24.67

18.82
24.67

17.44

23.11

17.35 23.04

17.41
23.05

17.38

23.02

9.03 14.10

18.89
24.75

0

5

10

15

20

25

MFR MAR

jGenProg GenProg-A jMutRepair kPar RSRepair-A jKali Kali-A Dynamoth ACS Cardumen Arja Simfix FixMiner AVATAR TBar PraPR

SBFL

All Defects4J Subjects
MFR / MAR vs. Tools

Fig. 9: UniDebug results with all studied APR systems on all Defects4J subjects

Fix category. Also, in terms of MFR, Kali-A achieves 18.82
with NegFix, which is also increasingly better than Kali-
A with the other three categories (19.88/22.74/24.27). We
find the reason is to be that NegFix patches are significantly
more prevalent for most code elements (including Non-
Modify ones), while other patch categories can be harder
to generate.

Finding 5: Non-Modify code elements (i.e., elements
with no patches) can be treated in the same way as
elements with only NegFix patches (i.e., the patches
that cannot fix any failing test but can cause originally
passing tests to fail) for precise unified debugging.

As a consequence from this finding, we assign any
unmodified element the NegFix category for all future RQs
unless otherwise specified.

4.3 RQ3 - How Does Unified Debugging Correlate with
APR Effectiveness?

APR systems all aim to produce correct patches for as
many bugs as possible. However, this is a rather challenging
goal, and even state-of-the-art APR tools cannot even fix
20% of the studied bugs [45]. Therefore, in this research
question, we empirically study whether unified debugging
is also limited by APR effectiveness (i.e., in producing
correct patches). The three sub-figures in Figure 11 show
the representative Top-1 metric for SBFL and UniDebug
using each APR system on (1) buggy versions where the
corresponding APR system has correct patches, (2) buggy
versions with incorrect but plausible patches, and (3) buggy
versions without even plausible patches, respectively.

Please note that we omit APR systems that did not
present detailed correct patch IDs in their original pub-
lications from these figures. Also, this research question

only considers the four core subjects studied from Defects4J
because most of the studied APR tools cannot be applied to
the remaining Mockito and Closure subjects and thus cannot
generate any patch for our analysis.

From the figures, we observe that different APR systems
perform differently in all three different bug sets, and al-
most all APR systems contribute to unified debugging to
outperform SBFL. One potential reason is that as long as
a patch can pass some originally failing test(s), its patch
location may be closely related to the actual buggy location,
since otherwise it cannot mute the bug impact to pass failing
tests. In this way, patches do not need to be correct or even
plausible to contribute to unified debugging. Furthermore,
even the patches that only make originally passing tests fail
can help eliminate the potentially correct/benign locations
to also boost unified debugging. This further demonstrates
the general applicability and promising future for unified
debugging.

Finding 6: Unified debugging effectiveness does not
rely on the availability of correct or even plausible
patches from APR. Similar as when conducting man-
ual program repair, APR patch execution results from
even incorrect/implausible patches can still reveal
actual buggy locations (when they pass some failing
test(s)) or eliminate correct locations (even when they
only fail on originally passing tests).

4.4 RQ4 - Advanced Unified Debugging via APR Sys-
tem Statistics

To combine the strengths of different APR systems, one
naive way is to simply combine the patches of different
APR systems for unified debugging, i.e., the UniDebug+
technique talked about in Section 2.4. Again, the final cat-

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

12

Tool

To
p-

1

75

100

125

150

175

ACS Arja AVATAR Cardumen Dynamoth FixMiner GenProg-A jGenProg jKali jMutRepair Kali-A kPar PraPR RSRepair-A Simfix TBar

NegFix NoneFix NoisyFix CleanFix

Categorization of Unmodified Elements

Top-1 vs. Tool

Tool

M
FR

0.00

20.00

40.00

60.00

ACS Arja AVATAR Cardumen Dynamoth FixMiner GenProg-A jGenProg jKali jMutRepair Kali-A kPar PraPR RSRepair-A Simfix TBar

NegFix NoneFix NoisyFix CleanFix

Categorization of Unmodified Elements

MFR vs. Tool

Fig. 10: Impact of casting Non-Modify code elements into different categories

EID SBFL Tool1 Tool2 Tool3 UniDebug+ UniDebug++
e1 0.8 CleanFix CleanFix CleanFix CleanFix CleanFix(3)
e2 0.8 CleanFix NegFix CleanFix CleanFix CleanFix(2)
e3 0.8 CleanFix NoneFix NoneFix CleanFix CleanFix(1)

TABLE 6: Example of UniDebug++

Tech Name Top-1 Top-3 Top-5 MFR MAR
SBFL 119 223 268 17.55 23.16

PraPR / ProFL 162 258 292 9.03 14.10
UniDebug+all 154 253 287 8.84 13.84

UniDebug++all 179 261 290 8.64 13.67
UniDebug+ 169 261 292 8.64 13.68

UniDebug++ 185 265 294 8.52 13.59

TABLE 7: Effectiveness of unified debugging variants on
all Defects4J subjects

egory information for a code element can be determined
by the code element’s best category information from all
patches across multiple APR systems. In this section, we
further propose a more advanced technique, UniDebug++,
which further distinguishes code elements with the same
suspiciousness values in the same category. More specifi-
cally, after assigning the patch group category (for patches
generated by all combined APR systems) to a code element
in the category aggregation step (shown in Figure 1), we
further count the total number of APR systems that gen-
erate patches in the same category as this code element.
The intuition is that if more APR systems assign the best
category information to a code element, this element should
have higher priority in the ranked list compared to its
tied peers. Table 6 shows a simple example to illustrate
UniDebug++. In this example, elements e1, e2, and e3

have the same SBFL 0.8 suspiciousness value and are all
in the CleanFix category according to UniDebug+; therefore
they cannot be distinguished when using UniDebug+. In
contrast, UniDebug++ further considers the number of APR
systems producing CleanFix patches for each element. For
example, e1 has CleanFix patches when using all three APR
systems and should be ranked higher than other elements.
In this way, we leverage more precise APR information for
more powerful unified debugging.

Table 7 shows the results of original SBFL, ProFL, UniDe-
bug+, and UniDebug++ on all the studied Defects4J subjects
in terms of Top-1, Top-3, Top-5, MFR, and MAR. Note
that as discussed in Section 4.1.2, APR systems specifically
targeting multi-edit patches can introduce extra noise for
unified debugging and have been excluded for UniDe-
bug+ and UniDebug++. Meanwhile, we also include, as
references, their variants which consider all studied APR
systems, denoted as UniDebug+all and UniDebug++all in
the table. From the results, we have the following obser-
vations. First, UniDebug+all and UniDebug++all perform
worse than UniDebug+ and UniDebug++, respectively. In
fact, UniDebug+all even performs worse than ProFL which
only uses the PraPR APR system. This finding further con-
firms our earlier qualitative analysis and Finding 2 that APR
systems targeting multi-edit patches are ill-suited for unified
debugging. Second, both UniDebug+ and UniDebug++ can
significantly outperform SBFL and ProFL in all metrics.
For example, UniDebug+ localizes 169 bugs within Top-
1, i.e., 50/7 more than SBFL/ProFL. Third, UniDebug++

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

13

Tool

To
p-

1

-5

0

5

10

15

20

ACS Arja AVATAR Dynamoth FixMiner jKali jMutRepair kPar Simfix TBar

SBFL UniDebug

Correct Patches Only

Top-1 vs Tool

Tool

To
p-

1

-2

0

2

4

6

8

10

12

14

ACS Arja AVATAR Dynamoth FixMiner jKali jMutRepair kPar Simfix TBar

SBFL UniDebug

Plausible but Incorrect Patches Only

Top-1 vs Tool

Tool

To
p-

1

50

60

70

80

90

100

ACS Arja AVATAR Dynamoth FixMiner jKali jMutRepair kPar Simfix TBar

SBFL UniDebug

Incorrect Patches Only

Top-1 vs Tool

Fig. 11: Unified debugging on buggy versions with (1)
correct, (2) incorrect but plausible, and (3) implausible
patches

achieves the best result (even comparing against our own
UniDebug+), localizing 185 bugs within Top-1, i.e., 66/23
more than state-of-the-art SBFL/ProFL.

4.4.1 Incremental Unified Debugging

Shown in Section 4.1, APR systems with more plausible
patches tend to perform better in unified debugging. There-
fore, we further study the impact of having different subsets
of APR systems for UniDebug+ and UniDebug++ on all the
395 studied bugs. To that end, we rank all APR systems
in descending order of the number of additional bugs that
each APR system can come up with plausible patches. In
this way, we can observe the effectiveness trend of UniDe-
bug+ and UniDebug++ with more and more APR systems.
Figure 12 presents Top-1 results when including more and
more APR systems under UniDebug+ and UniDebug++.
Note that each bar is cumulative, so bar Simfix represents
adding Simfix to the set of tools (PraPR, ACS, Simfix).
From the figure, we observe several interesting findings.
First, both UniDebug+ and UniDebug++ overall have in-
creasing effectiveness when including more and more APR
systems. Second, we also observe that both techniques tend

to saturate when new systems cannot provide additional
plausible patches. This actually indicates that a small subset
of the studied APR systems (e.g., 6 of them) can be com-
bined to achieve same effectiveness as the whole set (later
discussed in Section 4.7.3). Third, UniDebug++ has much
better effectiveness compared to UniDebug+, which simply
combines all patches from different APR systems together.
The reason is that most APR systems are helpful for fault
localization and the code elements ranked high by multiple
APR systems are indeed more likely to be buggy.

Please note that running multiple APR systems for
UniDebug+ or UniDebug++ can be costly. Although the
efficiency issue of these program repair systems is out of
scope for this paper, our above findings demonstrate that
a small subset (e.g., 6) of repair systems can already be
sufficient for effective unified debugging, meaning some
systems are not required to execute, substantially saving the
repair time (e.g., the 6 program repair systems together take
around 8 hours in total for each studied buggy version on
average using one thread). Also, as nowadays companies
have an abundance of computation resources (e.g., multi-
core servers, clusters, and clouds), such APR systems can be
easily executed in parallel to take full advantage of modern
computation resources and further increase the potential for
improved unified debugging with minimal delay; this not
only (1) improves the probability for the buggy project to be
directly automatically fixed via multiple APR systems, but
also (2) further boosts fault localization for manual repair
even when none of the APR systems can directly fix the bug.
Lastly, more and more techniques have recently also been
proposed to further speed up individual program repair
techniques, e.g., Chen et al. [61] have recently proposed a
general on-the-fly patch-validation framework to substan-
tially speed up existing APR systems. They can also be easily
applied to speed up the unified debugging process.

Finding 7: Our new unified debugging technique
considering common behaviors between multiple APR
systems, UniDebug++, can localize 185 bugs within
Top-1 on all studied Defects4J subjects, i.e., 66/23 more
than state-of-the-art SBFL/ProFL.

4.5 RQ5 - Impact of Different SBFL Formulae
In our previous research questions, we execute unified
debugging using one of the state-of-the-art SBFL formulae
(i.e., Ochiai). Besides Ochiai, unified debugging can also
be applicable alongside any other SBFL formula, but it is
unknown (1) if the effectiveness of unified debugging is
reliant on the underlying SBFL formula and (2) the volatility
of unified debugging effectiveness with respect to different
SBFL formulae. Therefore, in this research question, we im-
plement all 33 SBFL formulae considered in prior work [36],
[44], [49] and investigate their impact on the effectiveness of
unified debugging. Note that, similar to how we use Ochiai
with aggregation, we employ the SBFL aggregation strategy
for all SBFL formulae as described in Section 3.4.1.

Given that UniDebug++ is the most effective technique
of unified debugging, we evaluate the effectiveness of
UniDebug++ based on different SBFL formulae and present

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

14

Tool Combination

To
p-

1

0

50

100

150

200

UniDebug+ (Cumulative) UniDebug++ (Cumulative)

1 - PraPR

2 - ACS

3 - Simfix

4 - TBarFixer

5 - Dynamoth

6 - kParFixer

7 - AvatarFixer

8 - FixMiner

9 - KaliA

10 - jGenProg

11 - jMutRepair

12 - jKali

13 - Cardumen

Method Level

Top-1 vs Tool Combination

Fig. 12: UniDebug+ and UniDebug++ with increasing number of APR systems

the results in Figure 13 and Figure 14. In the figure, the
x axis represents all 33 spectrum-based fault localization
formulae while the y axis represents the metrics in terms
of Top-1, Top-3, Top-5, MFR, and MAR respectively. In
particular, the blue and orange columns refer to the original
SBFL formulae and UniDebug++ respectively. Based on the
figure, we observe that UniDebug++ achieves a consistent
improvement over all SBFL formulae. In particular, for Top-
1, the improvement of UniDebug++ on all original SBFL
formulae ranges from 61 (e.g., ER1a) to 129 (e.g., Wong);
for Top-3, the improvement ranges from 40 (e.g., Ochiai2)
to 173 (e.g., ER5c); and for Top-5, the improvement ranges
from 32 (e.g., Kulczynski2) to 178 (e.g., Anderberg). Besides
the Top-N metrics, MFR and MAR are both significantly
improved as well. For example, compared to all the original
SBFL formulae, MFR is improved by 61% on average and
MAR is improved by 53% on average.

In addition, we also find that even for those very inef-
fective SBFL formulae with extremely poor performance in
Top-1 (e.g., Overlap with only 13 Top-1 and Wong with only
14 Top-1), UniDebug++ can still boost them significantly
(e.g., 137 Top-1 and 143 Top-1 respectively). These results
imply that the performance of unified debugging is not
restricted by the initial fault localization techniques adopted
in the beginning phase of APR, and the patch execution
information from APR tools is helpful for fault localization
refinement in every circumstance.

Finding 8: Even the poorest SBFL formulae mas-
sively benefit from the unified debugging technique.
UniDebug++’s effectiveness is largely independent of
underlying SBFL formulae and consistently improves
upon all considered SBFL formulae, e.g., 61% and
53% average percent improvement on MFR and MAR
respectively.

4.6 RQ6 - Boosting Learning-Based Fault Localization

4.6.1 Effectiveness
In this section, we further investigate how UniDebug++
may boost state-of-the-art learning-based fault localization
techniques, including unsupervised-learning-based (i.e.,
PRFL [11] and PRFLMA [62]) and supervised-learning-
based (i.e., DeepFL [12]) fault localization. First, the sus-

piciousness values computed by unsupervised-learning-
based techniques can be directly used as the initial
values in the first step of unified debugging. There-
fore, we directly apply the suspiciousness values com-
puted by PRFL and PRFLMA into UniDebug++, denot-
ing them as PRFLUniDebug++ and PRFLMAUniDebug++, respec-
tively. Second, UniDebug++ with 33 SBFL formulae can
be served as one additional dynamic feature dimension
for supervised-learning-based techniques. Therefore, we ex-
tend DeepFL by injecting 33 new UniDebug++ features
between the original two dynamic feature dimensions, i.e.,
mutation features and spectrum features, denoting it as
DeepFLUniDebug++. Table 8 shows the experimental results
of PRFLUniDebug++, PRFLMAUniDebug++ and DeepFLUniDebug++.
Due to the randomness of DNN [12], we run DeepFL
and DeepFLUniDebug++ 10 times to calculate their average
results. From the table, we have the following observa-
tions. First, the basic UniDebug++ using default Ochiai
formula already significantly outperforms state-of-the-art
unsupervised-learning-based fault localization. For exam-
ple, as the best unsupervised technique, PRFLMA can lo-
calize 139 bugs within Top-1 while the basic UniDebug++
localizes 185 bugs within Top-1. In addition, UniDebug++
can significantly boost both unsupervised-learning-based
and supervised-learning-based fault localization. For exam-
ple, PRFLMAUniDebug++ localizes 199 bugs within Top-1. To
the best of our knowledge, this is the best unsupervised-
learning-based fault localization results on Defects4J to date.
PRFLMAUniDebug++ can even significantly outperform many
state-of-the-art supervised-learning-based techniques, e.g.,
TraPT [36], FLUCCS [44], and CombineFL [63] report local-
izing only 156, 160, and 168 bugs respectively from the same
dataset within Top-1. We also observe that UniDebug++
can further boost state-of-the-art supervised-learning-based
technique DeepFL (e.g., localizing 213.80 bugs within Top-1,
outperforming DeepFL with 206.30 bugs).

4.6.2 Overhead Analysis

The trade-off for boosting the effectiveness of learning-
based techniques often comes at a cost to performance.
Sometimes this compromise in performance makes the
boost infeasible in practice. Thus, we will also briefly discuss
the overhead of the considered learning-based approaches
when additionally considering the unified debugging fea-
tures (while the cost of running the APR tools for unified

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

15

0

50

100

150

200

Ample

And
erb

erg Dice

DStar
2

ER1a
ER1b

ER5c
Euc

lid

Goo
dm

an
GP02

GP03
GP13

GP19

Ham
an

n

Ham
ming

Ja
cc

ard

Kulc
zy

ns
ki1

Kulc
zy

ns
ki2 M1 M2

Och
iai

Och
iai

2

Ove
rla

p

ren
se

nD
ice

Rog
ers

Tan
im

oto

Rus
se

llR
ao SBI

Sim
ple

Matc
hin

g
Sok

al

Tara
ntu

la
W

on
g

W
on

g3
Zolt

ar

SBFL UniDebug++

Top-1 vs. SBFL Formulae

0

100

200

300

Ample

And
erb

erg Dice

DStar
2

ER1a
ER1b

ER5c
Euc

lid

Goo
dm

an
GP02

GP03
GP13

GP19

Ham
an

n

Ham
ming

Ja
cc

ard

Kulc
zy

ns
ki1

Kulc
zy

ns
ki2 M1 M2

Och
iai

Och
iai

2

Ove
rla

p

ren
se

nD
ice

Rog
ers

Tan
im

oto

Rus
se

llR
ao SBI

Sim
ple

Matc
hin

g
Sok

al

Tara
ntu

la
W

on
g

W
on

g3
Zolt

ar

SBFL UniDebug++

Top-3 vs. SBFL Formulae

0

100

200

300

Ample

And
erb

erg Dice

DStar
2

ER1a
ER1b

ER5c
Euc

lid

Goo
dm

an
GP02

GP03
GP13

GP19

Ham
an

n

Ham
ming

Ja
cc

ard

Kulc
zy

ns
ki1

Kulc
zy

ns
ki2 M1 M2

Och
iai

Och
iai

2

Ove
rla

p

ren
se

nD
ice

Rog
ers

Tan
im

oto

Rus
se

llR
ao SBI

Sim
ple

Matc
hin

g
Sok

al

Tara
ntu

la
W

on
g

W
on

g3
Zolt

ar

SBFL UniDebug++

Top-5 vs. SBFL Formulae

Fig. 13: Top-N comparison of SBFL and UniDebug++ over all formulae

Tech Name Top-1 Top-3 Top-5 MFR MAR
UniDebug++ 185 265 294 8.52 13.59

PRFL 114 202 246 23.37 27.85
PRFLUniDebug++ 187 257 293 9.92 14.71

PRFLMA 139 247 275 17.81 22.71
PRFLMAUniDebug++ 199 273 301 8.53 13.54

DeepFL 206.3 281.9 310.6 6.67 8.28
DeepFLUniDebug++ 213.8 288.1 316.3 6.90 8.72

TABLE 8: Effectiveness of unified debugging on boosting
learning-based fault localization

debugging has already been discussed in Section 4.4). Note
that we only present the cost analysis for boosting the state-
of-the-art DeepFL work as the overheads incurred by uni-
fied debugging features are similar for all studied learning-
based techniques.

We have collected detailed subject execution timings

for DeepFLUniDebug++ and DeepFL to investigate subject-
by-subject time costs, shown in Table 9. Column “Stage”
represents the training or testing phase of the approach.
Column “DeepFL” represents the time cost for DeepFL.
Column “DeepFLUniDebug++” represents the time cost for
DeepFLUniDebug++ while the smaller parenthesised number
represents the percent increase from DeepFL. Note that since
the testing cost is always far less than 1s and the training
cost dominates the overall execution cost, we only discuss
the training execution costs.

Each time cost represents the average cost to run the
leave-one-out training process for each subject (e.g., DeepFL
takes 2.56s on average to perform training for each Chart
subject). We see that DeepFL takes ∼39 seconds on av-
erage while DeepFLUniDebug++ takes ∼41 seconds to exe-
cute against Defects4J. These detailed time costs show that

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

16

10.0

20.0

40.0

60.0

80.0
100.0

200.0

Ample

And
erb

erg Dice

DStar
2

ER1a
ER1b

ER5c
Euc

lid

Goo
dm

an
GP02

GP03
GP13

GP19

Ham
an

n

Ham
ming

Ja
cc

ard

Kulc
zy

ns
ki1

Kulc
zy

ns
ki2 M1 M2

Och
iai

Och
iai

2

Ove
rla

p

ren
se

nD
ice

Rog
ers

Tan
im

oto

Rus
se

llR
ao SBI

Sim
ple

Matc
hin

g
Sok

al

Tara
ntu

la
W

on
g

W
on

g3
Zolt

ar

SBFL UniDebug++

MFR vs. SBFL Formulae

10.0

20.0

40.0

60.0

80.0
100.0

200.0

Ample

And
erb

erg Dice

DStar
2

ER1a
ER1b

ER5c
Euc

lid

Goo
dm

an
GP02

GP03
GP13

GP19

Ham
an

n

Ham
ming

Ja
cc

ard

Kulc
zy

ns
ki1

Kulc
zy

ns
ki2 M1 M2

Och
iai

Och
iai

2

Ove
rla

p

ren
se

nD
ice

Rog
ers

Tan
im

oto

Rus
se

llR
ao SBI

Sim
ple

Matc
hin

g
Sok

al

Tara
ntu

la
W

on
g

W
on

g3
Zolt

ar

SBFL UniDebug++

MAR vs. SBFL Formulae

Fig. 14: MFR and MAR comparison of SBFL and UniDebug++ over all formulae

DeepFLUniDebug++ consistently has identical execution times
as DeepFL on all subjects. In fact, the worst observed dif-
ference is an increased execution cost of 6.17% coming from
the Math subject. More so, even among the largest subject
in Defects4J, Closure, we see an increased training execu-
tion cost of only 4.98%! Based on these observations, it is
evident that utilizing UniDebug++ features within various
learning-based technique improves the effectiveness of the
technique while having minimal impact on the technique’s
performance.

Finding 9: UniDebug++ further boosts both state-of-
the-art unsupervised-learning-based and supervised-
learning-based fault localization techniques. Utilizing
UniDebug++ to boost state-of-the-art learning-based
fault localization techniques also incurs negligible
overhead for both training and testing.

4.7 RQ7 - Unified Debugging on Statement-Level Fault
Localization
Previous and current work demonstrate unified debug-
ging’s usefulness towards method-level fault localization
for manual program repair, but assessing the exact faulty
statement(s) can prove substantially more useful for auto-
mated program repair. In this RQ, therefore, we apply unified
debugging at the statement level for the first time. Each
statement is identified by its enclosing class, method sig-
nature, and line number as reported by each tool per repair

Time (sec) (Percent Increase)Subject Stage DeepFL DeepFLUniDebug++
Train 2.56 2.60 (1.56%)Chart Test 0.069 0.091 (31.88%)

Train 109.46 114.91 (4.98%)Closure Test 0.076 0.086 (13.16%)

Train 0.58 0.60 (3.45%)Lang Test 0.064 0.070 (9.38%)

Train 4.70 4.99 (6.17%)Math Test 0.069 0.073 (5.80%)

Train 6.36 6.65 (4.56%)Mockito Test 0.069 0.074 (7.25%)

Train 3.07 3.24 (5.54%)Time Test 0.062 0.073 (17.74%)

Train 39.21 41.16 (4.97%)Average Test 0.070 0.078 (11.43%)

TABLE 9: Detailed time costs for DeepFL and
DeepFLUniDebug++

patch. Then we calculate each statement’s best category and
rank all statements using the technique’s ranking features
previously discussed.

4.7.1 Individual Tools

Figure 15 describes the results of unified debugging for
each of the 16 APR tools executed on the core Defects4J
subjects. Since not every tool executes Closure or Mockito,
we exclude these two subjects from Figure 15 to show a
clear trend. Meanwhile, Table 10 also presents the unified
debugging results per tool on the entire Defects4J bench-
mark (including Closure and Mockito) to demonstrate the

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

17

Tools

To
p-

N

0

20

40

60

80

100

120

SBFL RSRepair ACS GenProgA Arja jMutRepair Simfix jKali jGenProg Cardumen Dynamoth KaliA FixMiner AVATAR kPar TBar PraPR

Top-1 Top-3 Top-5

Statement Level

Top-N vs Tool

Tools

M
FR

 /
M

A
R

0.00

20.00

40.00

60.00

SBFL RSRepair ACS GenProgA Arja jMutRepair Simfix jKali jGenProg Cardumen Dynamoth KaliA FixMiner AVATAR kPar TBar PraPR

MFR MAR

Statement Level

MFR / MAR vs Tool

Fig. 15: Statement-level UniDebug effectiveness for individual tools on the four core Defects4J subjects

Tool Top-1 Top-3 Top-5 MFR MAR
SBFL 15 54 72 114.96 133.06
ACS 16 55 73 114.73 132.83
Arja 17 56 75 113.64 132.69

RSRepair-A 17 55 78 113.50 132.72
GenProg-A 18 59 82 113.24 132.50
Cardumen 19 56 77 115.14 133.35

jKali 19 56 78 114.89 133.12
jMutRepair 19 55 75 115.00 133.37
jGenProg 20 54 78 115.19 133.67

Kali-A 20 62 83 113.12 132.35
Simfix 20 55 84 114.72 133.00

Dynamoth 23 60 79 114.63 132.85
FixMiner 42 74 92 113.78 132.55
AVATAR 58 85 102 113.40 132.47

TBar 58 80 97 114.03 132.94
kPar 61 83 99 114.01 133.13

PraPR 64 116 139 70.95 115.36

TABLE 10: Statement-level UniDebug tool effectiveness
on all Defects4J subjects

applicability of statement-level unified debugging where
some tools cannot execute on all systems.

From data described in Table 10 and Figure 15, we can
observe that unified debugging outperforms SBFL for most
tools across most metrics. Particularly, with respect to the
most crucial metric, Top-1, every tool at least performs on
par with SBFL and most tools actually outperform SBFL.
Looking at Figure 15, PraPR is the most effective by having
a Top-1 of 43 while Arja, RSRepair-A, ACS, and GenProg-A
have the worst effectiveness with a Top-1 of 8. All tools still
outperform SBFL’s 6 Top-1, showing our technique is still
useful even at the statement level. This leads us to our first
statement-level finding.

Finding 10: Unified debugging is still applicable
and useful at the statement-level granularity. At the
statement level, unified debugging still outperforms
SBFL across most studied APR tools.

With respect to PraPR, we again see the tool performing
significantly better than any other individual tool across all
metrics at the statement level as seen by Figure 15 and Table
10. We believe this, again, to be related due to a combination
of the mass number of patches produced by PraPR and the
diverse range of bug classes repairable by the tool. Focusing
on the set of multi-edit tools (Arja, GenProg-A, RSRepair-
A), we also see poor performance relative to other tools;
they barely outperform SBFL and still have among the worst
metrics compared to all tools.

Finding 11: PraPR performs the best out of all
analyzed tools across all metrics at statement-level
granularity. Likewise, multi-edit tools Arja, GenProg-
A, and RSRepair-A again perform the worst in Top-1.

4.7.2 Qualitative Analysis
We now briefly give a qualitative analysis on some examples
at the statement-level granularity, one from AVATAR/Math-
69 and the other from TBar/Math-46.
AVATAR: Figure 16 shows (1) the correct developer patch
and (2) one of several NoisyFix patches produced by
AVATAR on Math-69, while Table 11 describes the subject’s
detailed localization results (column descriptions the same
as in Table 5 with the gray row denoting the buggy state-
ment). This buggy statement, e13, is ranked 13th according
to its (largely tied) SBFL suspiciousness value. Upon execu-
tion of Math-69, AVATAR finds multiple NoisyFix patches
(Figure 16) for e13, a NoneFix patch for e3, and NegFix

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

18

/** File = FastDateFormat.java */
/** @@ -169,3 +169,3 @@ public RealMatrix getCorrelationPValues() */

double r = correlationMatrix.getEntry(i, j);
double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r)));

- out[i][j] = 2 * (1 - tDistribution.cumulativeProbability(t));
+ out[i][j] = 2 * tDistribution.cumulativeProbability(-t);

(a) Developer patch

/** File = FastDateFormat.java */
/** @@ -169,3 +169,3 @@ public RealMatrix getCorrelationPValues() */

double r = correlationMatrix.getEntry(i, j);
double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r)));

- out[i][j] = 2 * (1 - tDistribution.cumulativeProbability(t));
+ out[i][j] = 2 * (1 - tDistribution.cumulativeProbability(nVars));

(b) AVATAR NoisyFix patch

Fig. 16: Math-69 Patches

/** File = Complex.java */
/** @@ -258,3 +258,3 @@ public Complex divide(Complex divisor) */
if (divisor.isZero) {

// return isZero ? NaN : INF; // See MATH-657
- return isZero ? NaN : INF;
+ return NaN;
}
...
/** @@ -295,3 +295,3 @@ public Complex divide(double divisor) */
if (divisor == 0d) {

// return isZero ? NaN : INF; // See MATH-657
- return isZero ? NaN : INF;
+ return NaN;
}

(a) Developer patch

/** File = Complex.java */
/** @@ -258,3 +258,3 @@ public Complex divide(Complex divisor) */
if (divisor.isZero) {

// return isZero ? NaN : INF; // See MATH-657
- return isZero ? NaN : INF;
+ return isZero ? NaN : Complex.NaN;
}

(b) TBar NoisyFix patch

Fig. 17: Math-46 Patches

EID Suspicious Line SBFL AVATAR
Susp. Rank Category Rank

e1 org.apache.[...].PearsonsCorrelation#68 1.00 2 NegFix 4
e2 org.apache.[...].PearsonsCorrelation#69 1.00 2 NegFix 4
e3 org.apache.[...].PearsonsCorrelation#175 0.53 13 NoneFix 2
e4 org.apache.[...].PearsonsCorrelation#161 0.53 13 NegFix 13
e5 org.apache.[...].PearsonsCorrelation#162 0.53 13 NegFix 13
e6 org.apache.[...].PearsonsCorrelation#163 0.53 13 NegFix 13
e7 org.apache.[...].PearsonsCorrelation#164 0.53 13 NegFix 13
e8 org.apache.[...].PearsonsCorrelation#165 0.53 13 NegFix 13
e9 org.apache.[...].PearsonsCorrelation#166 0.53 13 NegFix 13

e10 org.apache.[...].PearsonsCorrelation#167 0.53 13 NegFix 13
e11 org.apache.[...].PearsonsCorrelation#169 0.53 13 NegFix 13
e12 org.apache.[...].PearsonsCorrelation#170 0.53 13 NegFix 13
e13 org.apache.[...].PearsonsCorrelation#171 0.53 13 NoisyFix 1

TABLE 11: AVATAR localization details for Math-69

EID Suspicious Line SBFL TBar
Susp. Rank Category Rank

e1 org.apache.[...].Complex#260 0.71 2 NoisyFix 1
e2 org.apache.[...].Complex#1183 0.71 2 NoneFix 2
e3 org.apache.[...].Complex#587 0.41 3 NegFix 3

TABLE 12: TBar localization details for Math-46

patches for all other statements. When it is time to rerank
all elements, e13 is the only statement in the NoisyFix
category, allowing the statement to be ranked 1st above all
other statements. Thus, in spite of the limited effectiveness
of APR tools at the statement level, we still see erroneous
statements nearly exclusively receive high-quality patches
which in turn yields higher localization results, further
strengthening the potential of unified debugging, especially
at the statement level.
TBar: Figure 17 shows (1) the correct developer patch for
Math-46 and (2) an incorrect NoisyFix patch produced by
TBar on Math-46 while Table 12 describes the subject’s de-
tailed localization results (column descriptions the same as
in Table 5 with the gray row denoting the buggy statement).
We see that, from only SBFL, one of the buggy elements, e1,
is tied with another element (i.e. they have the same suspi-
ciousness value) and are thus both ranked 2nd (according
to the worst-case ranking). From Figure 17, we see that the
correct patch modifies two return statements. Since this is
at the statement-level granularity, TBar is unable to modify
both buggy lines and instead only modifies one of the
buggy lines resulting in a NoisyFix patch. After acquiring
the NoisyFix repair information from TBar (Figure 17), one
of the buggy lines, e1, is now categorized as NoisyFix
which is higher than all other statements in the program.
Upon TBar’s completion of the repair process, only e2
receives a NoneFix patch and all other statements receive

NegFix patches. Thus according to the patch category hi-
erarchy (Section 2.2), e1 can still be differentiated from
e2, allowing the approach to correctly rerank e1 as the
most buggy statement in the program. In summary, at the
statement granularity, we observe the same phenomenon as
the method granularity that incorrect patches can still yield
more precise fault localization within unified debugging.

4.7.3 Unified Debugging Variants
Table 13 shows the Top-N metrics for all considered
APR tools. Rows UniDebug+ and UniDebug++ represent
UniDebug+ and UniDebug++ using all 13 single-edit tools.
Rows UniDebug+refined and UniDebug++refined respec-
tively represent UniDebug+ and UniDebug++ using the
refined selection of tools, namely PraPR, kPar, and AVATAR.

Similar to method-level fault localization, we see sub-
stantial uniform improvements from SBFL across all metrics
for statement-level fault localization on all unified debug-
ging techniques. Further results are shown in Figure 18
which describe the Top-N, MFR, and MAR across unified
debugging techniques. Despite these improvements, we
observe that using all single-edit tools from method-level
unified debugging failed to outperform using just ProFL in
terms of Top-1, results detailed in Table 13 via UniDebug+
and UniDebug++. Thus while unified debugging can still
improve upon SBFL, the usage of all single-edit APR tools
actually degrades unified debugging results.

Finding 12: All unified debugging techniques substan-
tially improve upon SBFL for all metrics, but tool com-
binations optimal for method-level fault localization
may conflict at the statement level.

This motivates us to investigate to further improve
unified debugging at the statement level. Since using all
single-edit tools actually degrades ProFL’s effectiveness,
we believe it is possible to find a subset of tools which
outperforms ProFL. From Table 10, we observe five tools
outperform other tools by large margins in Top-N; PraPR,
AVATAR, kPar, TBar, and FixMiner. In fact, each of these

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

19

tools perform template-based repairs, indicating template-
based APR tools may be better-suited for statement-level
fault localization than other classes of repair tools. Even
furthermore, this pattern also appears at the method level,
further suggesting the suitability of template-based repair
tools.

Finding 13: Template-based APR tools consistently
perform the among the best of all APR tools, indi-
cating template-based tools are best suited for unified
debugging fault localization.

Due to their substantial improvements, we explore if a
subset of these tools may yield unified debugging results
better than ProFL’s results. Executing multiple tools in a
real-world setting can be costly, so we examine unified
debugging with top three tools instead of all tools to
more closely resemble real-world repair. Specifically, we
decide to employ the top three tools which individually
exhibit the best Top-5 results, as determined by Table 10.
We additionally prioritize based on Top-5 instead of Top-1
because significantly more elements are being represented
at the statement level (statements vs methods). These extra
elements further dilute results to the point where unified
debugging localizes more correct elements above buggy
elements, seen from higher MFR / MAR in Table 13. Priori-
tizing tools with Top-5 (and higher Top-N) should promote
only APR tools which exclusively localize buggy methods
whereas prioritizing tools with Top-1 (and lower Top-N)
are less likely to yield consistent improvements, resulting
in degradation with more tools.

The results of this refined tool combination are shown in
Table 13. We see improvements of 420% (Top-1), 138% (Top-
3), 110% (Top-5), 40% (MFR), and 15% (MAR) from SBFL
by using this new tool combination. More impressively, our
technique generates 78 Top-1 which even outperforms Com-
bineFL, a recent state-of-the-art statement-level supervised-
learning-based fault localization technique [63]. Note that
the CombineFL work reports a Top-1 value of 72 but uses
a mixture of average-case ranking and best-case ranking
instead of worst-case ranking [63]. We discover CombineFL
localizes only 60 Top-1 when worst-case ranking is applied.
Surprisingly, with this worst-case ranking, CombineFL also
has vastly higher MAR than even SBFL (192 vs 133). By
comparison, UniDebug++refined is strictly better than Com-
bineFL. In addition to avoiding the high-quality training set
(which is often unavailable) and training time as required
by CombineFL, these facts show our technique leads the
state-of-the-art in statement-level fault localization.

Finding 14: Unified debugging performs on par with
state-of-the-art supervised-learning-based statement-
level fault localization techniques. UniDebug++ in
particular generates 78 Top-1 compared to 60 Top-1
from CombineFL (i.e., 30% improvement), the current
state-of-the-art supervised-learning-based statement-
level fault localization.

Tech Name Top-1 Top-3 Top-5 MFR MAR
SBFL 15 54 72 114.96 133.06

CombineFL 1 60 102 125 116.22 192.33
PraPR / ProFL 64 116 139 70.95 115.36

UniDebug+ 2 41 97 130 69.42 113.1
UniDebug++ 2 64 120 142 68.31 112.14

UniDebug+refined
3 59 118 144 70.20 114.41

UniDebug++refined
3 78 129 151 69.27 113.62

1 Represents original CombineFL [63] data converted to worst-case
ranking

2 Uses all 13 single-edit tools
3 Uses refined set of tools; PraPR, AVATAR, and kPar

TABLE 13: Statement-level effectiveness across all six
Defects4J subjects

Technique

To
p-

N

0

50

100

150

200

SBFL ProFL UniDebug+ all UniDebug++ all UniDebug+ UniDebug++

Top-1 Top-3 Top-5

Statement Level

Top-N vs. Technique

Technique

To
p-

N

0.00

50.00

100.00

150.00

SBFL ProFL UniDebug+ all UniDebug++ all UniDebug+ UniDebug++

MFR MAR

Statement Level

MFR / MAR vs. Technique

Fig. 18: Statement-level unified debugging effectiveness
on six subjects

4.8 RQ8 - Advanced Unified Debugging via Patch
Statistics

In previous sections, UniDebug++ uses the number of APR
systems to rank the tied code elements with the same
suspiciousness values in the same category. However, this
strategy may perform worse when there are not enough
APR systems. In this section, we propose an advanced tech-
nique, UniDebug+?, to further improve unified debugging
by utilizing the number of patches to rank the tied code
elements. In detail, after one code element is assigned a
best patch group category in the category aggregation step
(shown in Figure 1), we count the total number of patches
with the same category from all APR systems for this code
element. We then use such number to further rank the tied
code elements within the same category. In summary, the
major difference between UniDebug++ and UniDebug+? is
that the former utilizes the number of APR tools to further
rank the tied code elements while the latter utilizes the
number of patches.

The intuition is that if APR systems can generate more
patches with the best category information for a code ele-
ment, this element should be ranked higher in the ranked
list compared to other tied peers. In fact, such a strategy
using patch statistics can also be applied to individual APR
systems to extend the original idea of unified debugging

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

20

Tech Name Granularity Top-1 Top-3 Top-5 MFR MAR
UniDebug++ Method 185 265 294 8.52 13.59
UniDebug+? Method 195 271 298 8.06 12.98

UniDebug++refined Statement 78 129 151 69.27 113.62
UniDebug+?

refined Statement 85 142 160 65.75 109.81

TABLE 14: Effectiveness of UniDebug+? at method level
and statement level

Tech Name Top-1 Top-3 Top-5 MFR MAR
PRFLMAUniDebug++ 199 273 301 8.53 13.54
PRFLMAUniDebug+? 201 276 304 8.30 13.28
DeepFLUniDebug++ 213.8 288.1 316.3 6.90 8.72
DeepFLUniDebug+? 213.8 292.0 317.7 6.13 8.02

TABLE 15: Effectiveness of UniDebug+? to boost learning-
based fault localization

(e.g. ProFL?).
We now compare the effectiveness of UniDebug++

and UniDebug+? at both method level and statement
level (shown in Table 14). In this table, we observe that
UniDebug+? localizes 195 faults within Top-1 at the method
level and localizes 89 faults within Top-1 at the statement
level, further outperforming the corresponding original
UniDebug++ and showing the advantage of considering
patch statistics in ranking tied code elements.

With respect to learning-based approaches, we ob-
serve that UniDebug+? can also slightly help improve
learning-based fault localization (shown in Table 15). For
example, PRFLMAUniDebug+? (localizing 201 faults within
Top-1) outperforms corresponding PRFLMAUniDebug++ while
DeepFLUniDebug+? achieves better MFR and MAR val-
ues (i.e., 6.13 and 8.02 respectively) than corresponding
DeepFLUniDebug++. For DeepFL, the usage of UniDebug+?

within DeepFL improves Top-3, Top-5, MFR, and MAR
compared to DeepFLUniDebug++ (Table 15). This leads us to
our final finding.

Finding 15: Using the number of patches associ-
ated to an element as an advanced ranking strategy,
UniDebug+?, can further improve the effectiveness
of UniDebug++. Even for learning-based approaches,
using the UniDebug+? feature further improves upon
using the UniDebug++ feature for all considered ap-
proaches.

5 DISCUSSION

With all the information presented in Section 4, we now
(1) present a brief summarizing comparison of all unified
debugging variants at method-level and statement-level
granularities by breaking down the patch category compo-
sition of each unified debugging variant and (2) discuss the
potential application of mutation testing tools (e.g PIT [64])
used alongside/in lieu of APR tools in unified debugging.

5.1 Distribution of Patch Categories

Figure 19 shows the composition of patch categories for all
Top-N for each considered unified debugging variant on
all the 395 studied bugs for both method and statement
granularities. The total number of Top-N patches for each
variant is described in red at the top of each column.

P
ro

FL

U
n

iD
eb

u
g

+

U
n

iD
eb

u
g

+
+

U
n

iD
eb

u
g

+
*

0%

25%

50%

75%

100%

125%

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Grand Total NegFix NoneFix NoisyFix CleanFix

Method Level

Patch Category Distribution vs Top-N

P
ro

FL

U
n

iD
eb

u
g

+

U
n

iD
eb

u
g

+
+

U
n

iD
eb

u
g

+
*

0%

25%

50%

75%

100%

125%

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Grand Total CleanFix

Statement Level

Patch Category Distribution vs Top-N

Fig. 19: Distribution of patch categories for Top-N for
unified debugging variants

Method Granularity. Following our primary evaluation
metrics, we find that the CleanFix category comprises the
largest percentage of Top-N across all considered unified
debugging variants. For Top-1 in particular, we see the
CleanFix category comprising 49% of Top-1 in ProFL. As
unified debugging effectiveness increases, the number and
percentage of CleanFix patches monotonically increases, up
to an impressive ∼60% of Top-1 from UniDebug+?. In fact,
Top-N is dominated by the CleanFix category across all vari-
ants, respectively followed by the NoisyFix, NoneFix, and
NegFix categories. As Top-N increases, CleanFix patches
become less important while lower quality patch categories
become increasingly more prevalent, further showing the
critical importance of patch repair information from all
types of patches, not just high-quality patches.
Statement Granularity. At the statement granularity, we
observe similar results. For example, we still observe the
dominance of CleanFix over all other patch categories for all
Top-N across all unified debugging variants and the preva-
lence of lower quality patch categories as Top-N increases.
Meanwhile, it is interesting to observe that the percentage
of CleanFix patches is rather stable across different unified
debugging variants, which differs from the method granu-
larity. This may result from more CleanFix patches sharing
the same method(s) (rather than the same statement(s)) with
the actual buggy elements as unified debugging includes
more APR tools.

From these results at the method and statement gran-
ularities, we found that: (1) Top-1 heavily relies on Clean-
Fix patches for precise fault localization and increasingly
relies on lower quality patches as Top-N increases, (2)
both tie-breaking unified debugging variants, UniDebug++
and UniDebug+?, boost UniDebug while maintaining pre-
existing high-quality patch repair information, and (3) com-
pared to UniDebug, utilizing repair information from mul-
tiple APR tools yields significantly more information crucial

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

21

Tech Name Top-1 Top-3 Top-5 MFR MAR
SBFL 119 223 268 17.55 23.16
PIT 131 229 272 10.95 16.68

PraPR / ProFL 162 258 292 9.03 14.10
UniDebug+ 169 261 292 8.64 13.68

UniDebug+PIT
1 169 261 292 8.64 13.68

UniDebug++ 185 265 294 8.52 13.59
UniDebug++PIT

1 185 265 294 8.52 13.59
UniDebug+? 195 271 298 8.06 12.98

UniDebug+?
PIT

1 195 271 298 8.06 12.98
1 Includes all single-edit APR tools and the PIT mutation testing

tool.

TABLE 16: Effectiveness of using PIT alongside unified
debugging variants

for fault localization. Furthermore, we find the following
implications for pre-existing fault localization techniques:
(1) the coarse-grained information provided by traditional
SBFL techniques is grossly insufficient to break tied el-
ements, and (2) aggregating patch repair information or
other dynamic information alongside existing fault local-
ization may yield substantial improvements. Lastly, the
high prevalence of CleanFix categories in all Top-N also
indicates synergistic behaviour of unified debugging with
techniques whose ultimate objective is to also generate high
quality patches. Meanwhile, the increasing importance of
lower-quality patches as Top-N increases also indicates the
importance to generate a large number of diverse patches
for more powerful unified debugging.

5.2 Program Repair Tools vs. Mutation Testing Tools

Program repair is heavily related to mutation testing, the
former aims to find/generate bug-fixing patches while the
latter aims to find/generate bug-inducing mutants to simu-
late real bugs [35], [65], [66], [67], [68]. As mutation testing
generates mutants that will impact program tests, mutation
testing tools are also applicable to unified debugging. Thus
we examine how the inclusion of a leading mutation testing
tool called PIT [64] impacts unified debugging. Table 16
describes the effectiveness of various unified debugging
variants and PIT on all Defects4J subjects. Note that (1)
we execute PIT with all its available mutators and (2) we
compare UniDebug+, UniDebug++, and UniDebug+? with
and without PIT.

As we can see from Table 16, PIT by itself provides
adequate Top-1 gains over SBFL (131 vs 119), suggesting
the feasibility of mutations tools alongside or in lieu of
APR tools for our general unified debugging approach.
Meanwhile, closer inspection reveals not a single metric is
changed with the inclusion of PIT in UniDebug+, UniDe-
bug++, or UniDebug+?, indicating the inclusion of PIT in
these variants likely has no impact on effectiveness. This
makes sense as the inclusion of PIT is unlikely to yield
unique repair information (e.g., the studied PraPR APR tool
was built on PIT and can strictly generate more patches than
PIT). Thus unified debugging is indifferent and does not
necessarily favor APR tools or mutation testing tools, but
rather synergizes with tools and techniques that generate
diverse and high quality patch repair information.

5.3 Threats to Validity
5.3.1 Internal Validity
All of our study results are directly dependent on the cor-
rectness of our implementation of all the studied techniques.
Faulty implementations in any aspect will yield mislead-
ing/inaccurate results. To mitigate this threat, we reuse the
implementation of the SBFL and ProFL techniques obtained
from the ProFL authors. We also obtained the source code
for all the studied APR systems from the authors to inves-
tigate their impact on unified debugging. Furthermore, we
execute both APR systems with our modifications (to record
detailed patch execution information required by unified
debugging) and the original APR systems to ensure that
they produce the same results (i.e., our modification does
not change the APR behavior).

5.3.2 Construct Validity
This threat mainly lies in the dependent variables or metrics
used in this study. To reduce such threats, we adopted the
most widely used metrics in recent fault localization [12],
[36], [44] and unified debugging studies [48], [49].

5.3.3 External Validity
To evaluate on real-world bugs, we choose the Defects4J
dataset with hundreds of real-world bugs, which is the most
widely used benchmark suite for recent APR and fault local-
ization work. However, the study results may still not gener-
alize to all possible systems in the wild. Furthermore, prior
work has demonstrated that program repair tools might
overfit the Defects4J dataset [69]. As unified debugging is
based on patch repair information from program repair
tools, it is indeed possible that the overfitting can be fed
back to these fault localization results. However, as shown
in our study, the effectiveness of unified debugging does
not correlate with APR effectiveness. Also, the capability
of UniDebug+, UniDebug++, and UniDebug+? to utilize
multiple other program repair tools may also help mitigate
overfitting issues – These techniques are designed such that
the potential redundant sources of information from an
increasingly amount of program repair tools will lower the
chances of overfitting.

Since the study aims to investigate the impact of APR
systems for unified debugging, different APR systems may
also yield totally different results. Therefore, we simply
studied all state-of-the-art APR systems that (1) have pub-
licly available source code and (2) are applicable to the
widely used Defects4J benchmark [58].

6 RELATED WORK

As the studied unified debugging approach unifies tra-
ditional fault localization and automated program repair
(APR) to boost both areas, in this section, we talk about the
related work in both areas.

6.1 Fault Localization
The basic idea of fault localization is to automatically pro-
duce a ranking list of code elements (e.g., program meth-
ods or statements) based on the descending order of their
suspiciousness values (i.e., the probability of being buggy)

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

22

to help developers in manual debugging or serve as the
supplier for APR. Various fault localization techniques have
been proposed over the past decades. Spectrum-based fault
localization (SBFL) [70], [71], one of the most classic fault
localization approaches, has been intensively studied due to
its effectiveness and scalability. Its basic insight is that code
elements primarily executed by failed tests are more suspi-
cious than elements primarily executed by passed tests.

To date, various formulae (e.g., based on statistical analy-
sis or other heuristics) have been proposed to compute code
element suspiciousness, such as Tarantula [6], Ochiai [50],
SBI [7], and so on. One main limitation for such traditional
SBFL is that faulty code elements may be coincidentally ex-
ecuted by passed tests and elements executed by failed tests
do not always have real impacts on the program failure. To
bridge the gap between coverage and impact information,
mutation-based fault localization (MBFL) [8], [9], [35], [36]
has been proposed to transform program source code based
on mutation testing [72] to check the impact of each code
element on test outcomes. The basic idea of MBFL is that
if one mutant incurs different failure outputs of failed tests
before and after mutation, the corresponding code element
of this mutant may have a high impact on program failures,
and thus may be the buggy. MUSE [9] and Metallaxis [8] are
two widely studied MBFL techniques targeting traditional
application scenarios, while FIFL [35] is a MBFL technique
specifically targeting evolving software systems. Compared
with traditional MBFL techniques that were bound to mu-
tation testing, unified debugging utilizes program repair
information that aims to fix software bugs to pass more tests
rather than mutation testing that was originally proposed
to create new artificial bugs to fail more tests; furthermore,
unified debugging has also been shown to substantially
outperform state-of-the-art MBFL [48], [49]. In the literature,
researchers have also proposed various other fault local-
ization techniques, including techniques based on program
slicing [55], [73], development history [74], and information
retrieval [56], as well as techniques for combining various
dimensions of information via machine learning [12], [37],
[44].

6.2 Automated Program Repair

Automated program repair (APR) aims to directly fix pro-
gram bugs without human intervention. Given a buggy
project, APR techniques utilize various strategies to auto-
matically generate potential patches and then validate those
patches to check their correctness, e.g., based on regression
tests [45], static analysis [75], or formal specifications [76].
To date, test-driven APR has been extensively studied due
to the wide adoption of testing in practice. A typical test-
driven APR technique first applies off-the-shelf fault local-
ization techniques (e.g., Ochiai [50] has been widely used for
APR [21], [45], [57]) to pinpoint potential buggy locations for
patching. Then, any patches that can pass all the originally
failing and passing tests are called plausible patches, while
plausible patches semantically equivalent to corresponding
developer patches are called correct patches (which are the
final outcome for APR). Depending on how the patches
are generated, APR [21], [27], [45], [51] can be categorized
into the following categories [58], [77]: (1) heuristic-based

APR, which investigates possible code modifications for
patching by iterating a search space, e.g., GenProg [59]
uses genetic programming algorithm to search donor code
from existing code for generating patches; (2) constraint-
based APR, which typically transforms the APR problem into
a satisfiability problem by constructing a repair constraint
that the patches should satisfy, e.g., Nopol [10] leverages
an SMT solver to solve the condition synthesis problem;
(3) template-based APR, which performs APR via predefined
fixing patterns, e.g., FixMiner [52] automatically mines bug-
fix patterns from existing code repositories; (4) learning-
based APR, which uses machine learning techniques to learn
correct code locations/snippets from a training code corpus,
e.g., Prophet [27] and ELIXIR [78].

Recently, ProFL [48] initializes the idea of unified de-
bugging to investigate the effectiveness of APR for fault
localization. The experimental results show that ProFL is
able to boost/outperform state-of-the-art SBFL [6], [7], [50],
MBFL [8], [9], [35], [36], and unsupervised/supervised
learning based fault localization [11], [12], [44] using the
recent PraPR APR system [45], and also extends the appli-
cation scope of APR to all possible bugs. However, it is not
clear how other state-of-the-art APR techniques contribute
to unified debugging and how to further advance unified
debugging. This paper moves one step forward to that end,
particularly with regards to assessing the impact of other
APR tools in unified debugging.

7 CONCLUSION

In this paper, we have performed an extensive study of the
impacts of different automated program repair systems on
the recently proposed unified debugging approach [48], [49].
Our study results on the popular Defects4J benchmark suite
have revealed various practical guidelines / findings for
further advancing unified debugging, including: (1) nearly
all studied 16 repair systems positively contribute to uni-
fied debugging despite their varying repair capabilities, (2)
repair systems targeting multi-edit patches can bring extra-
neous noise into unified debugging, (3) repair systems with
more executed/plausible patches tend to perform better for
unified debugging, (4) unified debugging effectiveness does
not rely on the availability of correct patches in automated
repair, and (5) we propose an advanced unified debugging
technique, UniDebug++, which localizes over 20% more
bugs within Top-1 than state-of-the-art unified debugging
technique ProFL (evaluated against four Defects4J subjects).
Furthermore, we conduct more comprehensive studies to
extend the above experiments to make the following ad-
ditional unified debugging contributions: (6) we further
perform an extensive study on additional subjects from De-
fects4J (Closure and Mockito) and confirm that UniDebug++
again outperforms ProFL by localizing 185 (out of 395 in
total) bugs within Top-1, 14% more than ProFL, (7) we inves-
tigate the impact of 33 SBFL formulae on unified debugging
and observe that UniDebug++ consistently improves upon
all formulae, e.g., 61% and 53% average improvement on
MFR / MAR, (8) we demonstrate that UniDebug++ can
substantially boost state-of-the-art learning-based method-
level fault localization techniques, (9) we extend unified
debugging to the statement level for first time and observe

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

23

that UniDebug++ localizes 78 (out of 395 in total) bugs
within Top-1 (22% more bugs than ProFL) and outperforms
state-of-the-art learning-based fault localization techniques
by 30%, and finally (10) we further propose a new technique,
UniDebug+?, based on detailed patch statistics, to improve
upon UniDebug++, e.g., further localizing 9% more bugs
within Top-1 than UniDebug++ at the statement level.

In the near future, we intend to work on tentative program
repair, a new direction enabled by unified debugging to
allow fault localization and program repair to boost each
other for more powerful debugging, e.g., patch execution
results from an initial set of repair systems can enable
precise fault localization for applying more advanced repair
systems for cost-effective repair.

REFERENCES

[1] “Tricentis reports,” 2020. [Online]. Avail-
able: https://www.tricentis.com/resources/software-fail-watch-
5th-edition/

[2] U. Software, “Increasing software development productivity with
reversible debugging,” https://undo.io/media/uploads/files/
Undo ReversibleDebugging Whitepaper.pdf, 2016, accessed: Jan.
21, 2019.

[3] C. Boulder, “University of cambridge study: Failure to adopt
reverse debugging costs global economy $41 billion annually,”
https://www.roguewave.com/company/news/2013/university-
of-cambridge-reverse-debugging-study, 2013, accessed: Jan. 8,
2019.

[4] M. Wen, J. Chen, Y. Tian, R. Wu, D. Hao, S. Han, and S.-C. Cheung,
“Historical spectrum based fault localization,” IEEE Transactions on
Software Engineering (TSE), 2020.

[5] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy
of spectrum-based fault localization,” in Testing: Academic and
Industrial Conference Practice and Research Techniques-MUTATION
(TAICPART-MUTATION 2007). IEEE, 2007, pp. 89–98.

[6] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering, 2005, pp. 273–282.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” ACM Sigplan Notices, vol. 40,
no. 6, pp. 15–26, 2005.

[8] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605–628, 2015.

[9] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh In-
ternational Conference on Software Testing, Verification and Validation.
IEEE, 2014, pp. 153–162.

[10] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic
repair of conditional statement bugs in java programs,” IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp. 34–55, 2016.

[11] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-
based fault localization using pagerank,” in Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2017, pp. 261–272.

[12] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple
fault diagnosis dimensions for deep fault localization,” in Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2019, pp. 169–180.

[13] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing
program edits based on spectrum information,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM), 2011, pp.
23–32.

[14] C. Gouveia, J. Campos, and R. Abreu, “Using html5 visualizations
in software fault localization,” in 2013 First IEEE Working Confer-
ence on Software Visualization (VISSOFT), 2013, pp. 1–10.

[15] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. van Gemund,
“Diagnosis of embedded software using program spectra,” in
14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS’07), 2007, pp. 213–
220.

[16] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and H. Jin,
“Automated patch correctness assessment: How far are we?” in
the 35th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2020, 2020.

[17] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, p. 31–42.

[18] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “AVATAR: fixing
semantic bugs with fix patterns of static analysis violations,” in
SANER, 2019, pp. 456–467.

[19] T. Durieux and M. Monperrus, “Dynamoth: Dynamic code syn-
thesis for automatic program repair,” in Proceedings of the 11th
International Workshop on Automation of Software Test, ser. AST ’16.
Association for Computing Machinery, 2016, p. 85–91.

[20] M. Martinez and M. Monperrus, “Ultra-large repair search space
with automatically mined templates: The cardumen mode of
astor,” in SSBSE, 2018, pp. 65–86.

[21] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping
program repair space with existing patches and similar code,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018, pp. 298–309.

[22] M. Martinez and M. Monperrus, “Astor: A program repair library
for java,” in Proceedings of the 25th International Symposium on
Software Testing and Analysis, 2016, pp. 441–444.

[23] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs
via multi-objective genetic programming,” IEEE Transactions on
Software Engineering, 2018.

[24] Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang, “History-driven
build failure fixing: how far are we?” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 43–54.

[25] M. Wu, L. Zhang, C. Liu, S. H. Tan, and Y. Zhang, “Automating
cuda synchronization via program transformation,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2019, pp. 748–759.

[26] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program
transformations from singular examples via big code,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 255–266.

[27] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016,
pp. 298–312.

[28] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, 2015, p. 24–36.

[29] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, 2015, pp. 166–178.

[30] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, 2017, pp. 727–
739.

[31] F. Long and M. Rinard, “An analysis of the search spaces for gen-
erate and validate patch generation systems,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). IEEE,
2016, pp. 702–713.

[32] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., vol. 82, no. 11, pp. 1780–1792, 2009. [Online]. Available:
https://doi.org/10.1016/j.jss.2009.06.035

[33] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund,
“Spectrum-based multiple fault localization,” in ASE 2009,
24th IEEE/ACM International Conference on Automated Software
Engineering, Auckland, New Zealand, November 16-20, 2009.
IEEE Computer Society, 2009, pp. 88–99. [Online]. Available:
https://doi.org/10.1109/ASE.2009.25

[34] ——, “An observation-based model for fault localization,”
in Proceedings of the 2008 International Workshop on Dynamic
Analysis: held in conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2008), WODA
2008, Seattle, Washington, USA, July 21, 2008, B. Liblit and
A. Rountev, Eds. ACM, 2008, pp. 64–70. [Online]. Available:
https://doi.org/10.1145/1401827.1401841

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

24

[35] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults
to localize developer faults for evolving software,” in OOPSLA,
2013, p. 765–784.

[36] X. Li and L. Zhang, “Transforming programs and tests
in tandem for fault localization,” Proc. ACM Program.
Lang., vol. 1, no. OOPSLA, Oct. 2017. [Online]. Available:
https://doi.org/10.1145/3133916

[37] J. Xuan and M. Monperrus, “Learning to combine multiple rank-
ing metrics for fault localization,” in 2014 IEEE International Con-
ference on Software Maintenance and Evolution. IEEE, 2014, pp.
191–200.

[38] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-
rank based fault localization approach using likely invariants,” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis, 2016, pp. 177–188.

[39] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on
software engineering, vol. 38, no. 1, pp. 54–72, 2011.

[40] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey
on software fault localization,” IEEE Transactions on Software Engi-
neering, vol. 42, no. 8, pp. 707–740, 2016.

[41] M. Monperrus, “Automatic software repair: a bibliography,” ACM
Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–24, 2018.

[42] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proceedings of the 2011 interna-
tional symposium on software testing and analysis, 2011, pp. 199–209.

[43] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expecta-
tions on automated fault localization,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016, pp.
165–176.

[44] J. Sohn and S. Yoo, “Fluccs: using code and change metrics to im-
prove fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2017, pp. 273–283.

[45] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
19–30.

[46] S. Saha et al., “Harnessing evolution for multi-hunk program
repair,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 13–24.

[47] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, 2014, pp. 437–440.

[48] Y. Lou, A. Ghanbari, X. Li, L. Zhang, D. Hao, and L. Zhang, “Can
automated program repair refine fault localization?” arXiv preprint
arXiv:1910.01270, 2019.

[49] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and
L. Zhang, “Can automated program repair refine fault localiza-
tion? a unified debugging approach,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020, pp. 75–87.

[50] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation
of similarity coefficients for software fault localization,” in 2006
12th Pacific Rim International Symposium on Dependable Computing
(PRDC’06). IEEE, 2006, pp. 39–46.

[51] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and
L. Zhang, “Precise condition synthesis for program repair,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 416–426.

[52] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Mon-
perrus, and Y. Le Traon, “Fixminer: Mining relevant fix patterns
for automated program repair,” Empirical Software Engineering, pp.
1–45, 2020.

[53] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le
Traon, “You cannot fix what you cannot find! an investigation
of fault localization bias in benchmarking automated program
repair systems,” in 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), 2019, pp. 102–113.

[54] S. Benton, X. Li, Y. Lou, and L. Zhang, “On the effectiveness
of unified debugging: An extensive study on 16 program repair
systems,” in 2020 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 2020.

[55] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault lo-
calization using execution slices and dataflow tests,” in Proceedings

of Sixth International Symposium on Software Reliability Engineering.
ISSRE’95. IEEE, 1995, pp. 143–151.

[56] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based
on bug reports,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 14–24.

[57] M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung, “Context-aware
patch generation for better automated program repair,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), 2018, pp. 1–11.

[58] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. D. A. Bissyande, D. Kim,
P. Wu, J. Klein, X. Mao, and Y. Le Traon, “On the efficiency of
test suite based program repair: A systematic assessment of 16
automated repair systems for java programs,” in 42nd ACM/IEEE
International Conference on Software Engineering (ICSE), 2020.

[59] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in 2009 IEEE
31st International Conference on Software Engineering. IEEE, 2009,
pp. 364–374.

[60] K. Pearson, “Notes on regression and inheritance in the case of two
parents proceedings of the royal society of london, 58, 240-242,”
1895.

[61] L. Chen, Y. Ouyang, and L. Zhang, “Fast and precise on-the-fly
patch validation for all,” in ICSE, 2021, pp. 1123–1134.

[62] M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang, and S. Khur-
shid, “An empirical study of boosting spectrum-based fault local-
ization via pagerank,” IEEE Transactions on Software Engineering,
2019.

[63] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empir-
ical study of fault localization families and their combinations,”
IEEE Transactions on Software Engineering, 2019.

[64] “Pit mutation testing system,” 2018. [Online]. Available:
http://pitest.org/

[65] T. A. Budd, “Mutation analysis of program test data,” Ph.D.
dissertation, New Haven, CT, USA, 1980, aAI8025191.

[66] V. Musco, M. Monperrus, and P. Preux, “A large-scale study of call
graph-based impact prediction using mutation testing,” Software
Quality Journal, pp. 1–30, 2016.

[67] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei,
“Test generation via dynamic symbolic execution for mutation
testing,” in ICSM, 2010, pp. 1–10.

[68] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE transactions on software engineering,
vol. 37, no. 5, pp. 649–678, 2010.

[69] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical
review of java program repair tools: A large-scale experiment on
2,141 bugs and 23,551 repair attempts,” in FSE, 2019, p. 302–313.

[70] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineer-
ing and methodology (TOSEM), vol. 20, no. 3, pp. 1–32, 2011.

[71] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight
fault-localization using multiple coverage types,” in 2009 IEEE
31st International Conference on Software Engineering. IEEE, 2009,
pp. 56–66.

[72] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE TSE, vol. 37, no. 5, pp. 649–678,
2011.

[73] M. Renieres and S. P. Reiss, “Fault localization with nearest neigh-
bor queries,” in 18th IEEE International Conference on Automated
Software Engineering, 2003. Proceedings. IEEE, 2003, pp. 30–39.

[74] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Pre-
dicting faults from cached history,” in 29th International Conference
on Software Engineering (ICSE’07). IEEE, 2007, pp. 489–498.

[75] R. van Tonder and C. L. Goues, “Static automated program repair
for heap properties,” in Proceedings of the 40th International Confer-
ence on Software Engineering, 2018, pp. 151–162.

[76] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller, “Automated fixing of programs with contracts,”
in Proceedings of the 19th international symposium on Software testing
and analysis, 2010, pp. 61–72.

[77] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated pro-
gram repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65,
2019.

[78] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object-oriented program repair,” in 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2017, pp. 648–659.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3125203, IEEE
Transactions on Software Engineering

25

Samuel Benton received his B.S. in Software
Engineering and B.S. in Computer Engineering
in 2016 and Masters in Software Engineering in
2019 from the University of Texas at Dallas. He
is a currently Software Engineering doctoral can-
didate attending the University of Texas at Dallas
under the supervision of Dr. Lingming Zhang and
Dr. Adrian Marcus.

Xia Li is an Assistant Professor in the Depart-
ment of Software Engineering and Game De-
sign and Development at Kennesaw State Uni-
versity. He received his PhD degree in Com-
puter Science at University of Texas at Dallas
supervised by Dr. Lingming Zhang. His research
interests focus on Software Engineering, in par-
ticular: software testing and debugging involving
dynamic/static program analysis.

Yiling Lou is currently a postdoctoral fellow in
the Department of Computer Science at Purdue
University. She received her B.S. in 2016 and
Ph.D. in 2021 from the Department of Computer
Science and Technology at Peking University.
Her research interests mainly focus on Software
Testing and Debugging, and its synergy with Ar-
tificial Intelligence and Program Analysis.

Lingming Zhang is an Associate Professor in
Department of Computer Science at the Univer-
sity of Illinois at Urbana-Champaign, where he
leads the Intelligent Software Engineering (iSE)
group. He obtained PhD in Electrical and Com-
puter Engineering at the University of Texas at
Austin in 2014. He received BSc in Computer
Science from Nanjing University and MSc in
Computer Science from Peking University. His
main research interests lie in Software Engi-
neering, and its synergy with Machine Learning,

Programming Languages, and Formal Methods. His research has been
recognized with a number of awards, including the ACM SIGSOFT Early
Career Researcher Award, NSF CAREER Award, Google Faculty Re-
search Award, SAMSUNG GRO Award, and multiple distinguished/best
paper awards.

